天气与气候

敦煌太阳总辐射多时间尺度变化特征及影响因素

  • 王云鹏 ,
  • 李红英 ,
  • 姚玉璧 ,
  • 李栋梁 ,
  • 范琦玮 ,
  • 刘香萍
展开
  • 1.酒泉市气象局,甘肃 酒泉 735000
    2.兰州资源环境职业技术大学,甘肃 兰州 730021
    3.南京信息工程大学,江苏 南京 210044
    4.敦煌市气象局,甘肃 敦煌 736200
王云鹏(1967-),男,高级工程师,主要从事应用气象研究. E-mail: 25592188@163.com

收稿日期: 2023-03-20

  修回日期: 2023-10-09

  网络出版日期: 2023-12-18

基金资助

甘肃省高等学校产业支撑计划项目“一带一路”太阳能高辐射区光能开发潜力与利用效率评估研究及应用(2020C-34);甘肃省自然科学基金(22JR5RF1080);2022年度酒泉市科技计划项目(2022MB1038)

Multi-time scale change characteristics and influencing factors of total solar radiation in Dunhuang City

  • Yunpeng WANG ,
  • Hongying LI ,
  • Yubi YAO ,
  • Dongliang LI ,
  • Qiwei FAN ,
  • Xiangping LIU
Expand
  • 1. Jiuquan Meteorological Bureau, Jiuquan 735000, Gansu, China
    2. Lanzhou Resources and Environment Vocational and Technical University, Lanzhou 730021, Gansu, China
    3. Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu, China
    4. Dunhuang Meteorological Bureau, Dunhuang 736200, Gansu, China

Received date: 2023-03-20

  Revised date: 2023-10-09

  Online published: 2023-12-18

摘要

采用集合经验模态分解(EEMD)以及M-K突变检验方法,基于敦煌市1971—2020年太阳总辐射、相对湿度、总云量和沙尘日数等气象资料,分析了敦煌市太阳总辐射演变的多时间尺度特征,探讨了影响敦煌市太阳辐射的关键气象因素。结果表明:(1) 1971—2020年敦煌市年太阳总辐射上升趋势显著,线性气候倾向率为49.6 MJ·m-2·(10a)-1,多年平均年辐射量为6354.0 MJ·m-2,属于太阳能资源最丰富区。年辐射在1970年代最少,2010年代最大。敦煌市太阳辐射四季分明,辐射量夏季>春季>秋季>冬季,分别以32.5、13.4、2.9 MJ·m-2·(10a)-1和1.1 MJ·m-2?(10a)-1的速率增加。近50 a敦煌市太阳总辐射以2.9 a和7.1 a的年际变化和16.7 a的年代际变化占主导地位。(2) 月太阳辐射变化呈“单峰型”,从3月开始急剧增加,5月达峰值,6月开始逐渐下降,12月达全年最低值。太阳总辐射小时分布呈单峰型,一天中最大值出现在12:00—13:00。(3) 年、春季和夏季太阳辐射变化的突变时间为1997年、2000年和1982年。(4) 影响敦煌太阳辐射的气象要素可归结为三个因子:大气透明度因子、光照因子和湿度因子,不同季节各气象因子与太阳辐射的相关性有所差异。

本文引用格式

王云鹏 , 李红英 , 姚玉璧 , 李栋梁 , 范琦玮 , 刘香萍 . 敦煌太阳总辐射多时间尺度变化特征及影响因素[J]. 干旱区研究, 2023 , 40(12) : 1885 -1897 . DOI: 10.13866/j.azr.2023.12.02

Abstract

Using ensemble empirical mode decomposition and the M-K mutation test, the multi-times cale characteristics of the evolution of total solar radiation in Dunhuang city were analyzed based on the meteorological data of total solar radiation, relative humidity, total cloudiness, and dust days in Dunhuang city between 1971 and 2020. The key meteorological factors influencing solar radiation in Dunhuang city were explored. The results show the following: (1) There was a significant upward trend of annual total solar radiation in Dunhuang city between 1971 and 2020, with a linear climate propensity rate of 49.6 MJ·m-2·(10a)-1, and the multiyear average annual radiation was 6354.0 MJ·m-2, belonging to the area with the most abundant solar resources. The annual radiation was lowest in the 1970s and highest in the 2010s. Dunhuang has four distinct seasons of solar radiation, with radiation increasing at rates of 32.5, 13.4, 2.9, and 1.1 MJ·m-2·(10a)-1 in summer > spring > fall > winter, respectively. The total solar radiation in Dunhuang city in the last 50 years was dominated by interannual variations of 2.9 and 7.1 years and interdecadal variations of 16.7 years. (2) Monthly solar radiation varied in a “single-peak” pattern, with a sharp increase in March, a peak in May, a gradual decrease in June, and a yearly minimum in December. The hourly distribution of total solar radiation is monomodal, with the maximum occurring between 12:00 and 13:00 a.m. (3) The annual, spring, and summer solar radiation changes were abrupt in 1997, 2000, and 1982. (4) Meteorological factors affecting solar radiation at Dunhuang can be attributed to three factors: atmospheric transparency, illumination, and humidity, and the correlation between each meteorological factor and solar radiation varies according to the seasons.

参考文献

[1] 和清华, 谢云. 我国太阳总辐射气候学计算方法研究[J]. 自然资源学报, 2010, 25(2): 308-319.
[1] [He Qinghua, Xie Yun. Research on the climatological calculation method of solar radiation in China[J]. Journal of Natural Resources, 2010, 25(2): 308-319. ]
[2] Tang W J, Yang K, Qin J, et al. A 16-year dataset (2000-2015) of high-resolution (3?h, 10?km) global surface solar radiation[J]. Earth System Science Data, 2019, 11(4): 1905-1915.
[3] 赵海涵, 潘学标, 王紫文. 内蒙古中部地区总辐射日曝辐量计算方法研究[J]. 太阳能学报, 2017, 38(7): 1786-1793.
[3] [Zhao Haihan, Pan Xuebiao, Wang Ziwen. Estimation of daily solar radiation in central Inner Mongolia[J]. Acta Energiae Solaris Sinica, 2017, 38(7): 1786-1793. ]
[4] 王卫东, 李净, 张福存, 等. 基于BP神经网络的太阳辐射预测——以兰州市为例[J]. 干旱区资源与环境, 2014, 28(2): 185-189.
[4] [Wang Weidong, Li Jing, Zhang Fucun, et al. Simulation of solar radiation in Lanzhou based on BP neural network[J]. Journal of Arid Land Resources and Environment, 2014, 28(2): 185-189. ]
[5] 普宗朝, 张山清, 宾建华, 等. 新疆乌-昌地区太阳能资源精细化时空变化分析[J]. 干旱区资源与环境, 2012, 26(6): 33-39.
[5] [Pu Zongchao, Zhang Shanqing, Bin Jianhua, et al. Solar energy resource spatial-temporal variation in Urumqi-Changji region of Xinjiang[J]. Journal of Arid Land Resources and Environment, 2012, 26(6): 33-39. ]
[6] 孟圆悦, 闫增峰, 王江丽, 等. 龙门石窟大卢舍那像龛太阳辐射特征研究[J]. 干旱区资源与环境, 2022, 36(6): 129-138.
[6] [Meng Yuanyue, Yan Zengfeng, Wang Jiangli, et al. Research on solar radiation characteristics in Vairocana Buddha niche in Longmen Grottoes[J]. Journal of Arid Land Resources and Environment, 2022, 36(6): 129-138. ]
[7] Diaz H, Bradley R S, Eischeid J K. Precipitation fluctuations over global land areas since the late 1800’s[J]. Journal of Geophysical Research, 1989, 94(D1): 1195-1210.
[8] Yang Y H, Zhao N, Hao X H, et al. Decreasing trend of sunshine hours and related driving forces in North China[J]. Theoretical and Applied Climatology, 2007, 97(1): 97-98.
[9] Wild M, Ohmura A, Gilgen H, et al. Validation of GCM simulated radiative fluxes using surface observations[J]. Journal of Climate, 1995, 8(5):1309-1324.
[10] Liepert B G. Observed reductions of surface solar radiation at sites in the United States and world from 1961 to 1990[J]. Geophysical Research Letters, 2002, 29(10): 61-64.
[11] Wild M, Ohmura A, Makowski K, et al. Impact of global dimming and brightening on global warming[J]. Geophysical Research Letters, 2007, 34(4): 1-4.
[12] 马金玉, 罗勇, 申彦波, 等. 近50年中国太阳总辐射长期变化趋势[J]. 中国科学: 地球科学, 2012, 42(10): 1597-1608.
[12] [Ma Jinyu, Luo Yong, Shen Yanbo, et al. Regional long-term trend of ground solar radiation in China over the past 50 years[J]. Science China Earth Sciences, 2012, 42(10): 1597-1608. ]
[13] 陈志华. 1957—2000年中国地面太阳辐射状况的研究[D]. 北京: 中国科学院大气物理研究所, 2005.
[13] [Chen Zhihua. Study on Surface Solar Radiation during 1957-2000 over China[D]. Beijing: Institute of Atmospheric Physics, Chinese Academy of Science, 2005. ]
[14] 姚玉璧, 郑绍忠, 董宏昌, 等. 中国西北地区太阳辐射时空分异特征[J]. 干旱区研究, 2023, 40(6):863-873.
[14] [Yao Yubi, Zheng Shaozhong, Dong Hongchang, et al. Anomaly temporal-spatial distribution of solar radiation in Northwest China[J]. Arid Zone Research, 2023, 40(6): 863-873. ]
[15] 杨羡敏, 曾燕, 邱新法, 等. 1960—2000年黄河流域太阳总辐射气候变化规律研究[J]. 应用气象学报, 2005, 16(2): 243-248.
[15] [Yang Xianmin, Zeng Yan, Qiu Xinfa, et al. The climatic change of global solar radiation over the Yellow River Basin during 1960-2000[J]. Journal of Applied Meteorological Science, 2005, 16(2): 243-248. ]
[16] 申彦波, 王标. 近50年中国东南地区地面太阳辐射变化对气温变化的影响[J]. 地球物理学报, 2011, 54(6): 1457-1465.
[16] [Shen Yanbo, Wang Biao. Effect of surface solar radiation variations on temperature in South-East China during recent 50 years[J]. Chinese Journal of Geophysics, 2011, 54(6): 1457-1465. ]
[17] 谢今范, 张婷, 张梦远, 等. 近50 a东北地区地面太阳辐射变化及其原因分析[J]. 太阳能学报, 2012, 33(12): 2127-2134.
[17] [Xie Jinfan, Zhang Ting, Zhang Mengyuan, et al. Change and reason analysis of ground solar radiation in Northeast China over recent 50 years[J]. Acta Energiae Solaris Sinica, 2012, 33(12): 2127-2134. ]
[18] 蔡子颖, 郑有飞, 刘建军, 等. 长江三角洲地面太阳辐射变化和相关因素分析[J]. 气象科学, 2009, 29(4): 447-453.
[18] [Cai Ziying, Zheng Youfei, Liu Jianjun, et al. Analysis of solar radiation and relative factors inYangtze River Delta of China[J]. Journal of the Meteorological Sciences, 2009, 29(4): 447-453. ]
[19] 郭晓宁, 保广裕, 郑玲, 等. 格尔木地区光伏电站周边区域太阳辐射特征分析[J]. 沙漠与绿洲气象, 2014, 8(6): 47-52.
[19] [Guo Xiaoning, Bao Guangyu, Zheng Ling, et al. Analysis on the characteristics of solar radiation of the photovoltaic power station area in golmud[J]. Desert and Oasis Meteorology, 2014, 8(6): 47-52. ]
[20] 杨凤娟, 亢燕铭, 刘琼, 等. 新疆地面太阳辐射及其CERES/SSF卫星资料适用性研究[J]. 干旱区研究, 2019, 36(6): 1401-1410.
[20] [Yang Fengjuan, Kang Yanming, Liu Qiong, et al. Surface solar radiation in Xinjiang and the applicability of CERES/SSF satellite data[J]. Arid Zone Research, 2019, 36(6): 1401-1410. ]
[21] 钱莉, 刘明春, 杨永龙, 等. 1960年至2009年河西走廊东部太阳辐射变化规律及太阳能资源利用分析[J]. 资源科学, 2011, 33(5): 823-828.
[21] [Qian Li, Liu Mingchun, Yang Yonglong, et al. Characteristics of change in solar radiation and solar energy resources use over the eastern Hexi Corridor[J]. Resources Science, 2011, 33(5): 823-828. ]
[22] 武丹. 甘肃河西地区日照辐射探究[J]. 科学技术创新, 2019(14): 38-39.
[22] [Wu Dan. Exploration of sunshine radiation in Hexi region of Gansu[J]. Scientific and Technological Innovation, 2019(14): 38-39. ]
[23] 赵煜飞, 廖捷, 张强, 等. 1991—2020年中国地面气候值数据集研制[J]. 大气科学, doi: 10.3878/j.issn.1006-9895.2204.22010.
[23] [Zhao Yufei, Liao Jie, Zhang Qiang, et al. 1991-2020 China Climate Normals[J]. Chinese Journal of Atmospheric Sciences, doi: 10.3878/j.issn.1006-9895.2204.22010. ]
[24] 中国气象局. 地面气象观测规范[M]. 北京: 气象出版社, 2003: 126-127.
[24] [ China Meteorological Administration. Specifications for Surface Meteorological Observation[M]. Beijing: Meteorological Press, 2003: 126-127. ]
[25] Wu Z, Huang N E. Ensemble empirical mode decomposition: A noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2011, 1(1): 1-41.
[26] 楼俊伟, 张鑫, 王可欣, 等. 1951—2016年秦巴山区霜期变化的时空特征分析[J]. 沙漠与绿洲气象, 2019, 13(5): 82-88.
[26] [Lou Junwei, Zhang Xin, Wang Kexin, et al. Spatial and temporal characteristics of frost period changes in Qinling-Daba Mountain area from 1951 to 2016[J]. Desert and Oasis Meteorology, 2019, 13(5): 82-88. ]
[27] 朱文泉. 中国陆地生态系统植被净初级生产力遥感估算及其与气候变化关系的研究[D]. 北京: 北京师范大学, 2005.
[27] [Zhu Wenquan. Estimation of Net Primary Productivty of Chinese Terrestrial Vegetation Based on Remote Sensing and its Relationship with Global Climate Change[D]. Beijing: Beijing Normal University, 2005. ]
[28] Huston M A, Wolverton S. The global distribution of net primary production: Resolving the paradox[J]. Ecological Monographs, 2009, 79(3): 343-377.
[29] 焦翠翠, 于贵瑞, 展小云, 等. 全球森林生态系统净初级生产力的空间格局及其区域特征[J]. 第四纪研究, 2014, 34(4): 699-709.
[29] [Jiao Cuicui, Yu Guirui, Zhan Xiaoyun, et al. Spatial pattern and regional characteristics of global forest ecosystem net primary productivity[J]. Quaternary Sciences, 2014, 34(4): 699-709. ]
[30] 冯晓莉, 刘彩红, 林鹏飞, 等. 1953—2017年黄河源区气温变化的多尺度特征[J]. 气候与环境研究, 2020, 25(3): 333-344.
[30] [Feng Xiaoli, Liu Caihong, Lin Pengfei, et al. Multi-timescale features of surface air temperature in the source region of the Yellow River during 1953-2017[J]. Climatic and Environmental Research, 2020, 25(3): 333-344. ]
[31] 李慧群, 付遵涛. 基于EEMD的中国地区1956—2005年日照变化的趋势分析[J]. 北京大学学报 (自然科学版), 2012, 48(3): 393-398.
[31] [Li Huiqun, Fu Zuntao. Sunshine duration’s trend behavior based on EEMD over China in 1956-2005[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2012, 48(3): 393-398. ]
[32] Li Yonghong, Davis C H. Improved methods for analysis of decadal elevation-change time series over Antarctica[J]. IEEE Transations on Geoscience and Romote Sensing, 2006, 44(10): 2687-2697.
[33] 黄进, 柳艺博, 张方敏. 基于EEMD我国粮食主产区农业旱情对气候变化的响应[J]. 水土保持学报 2023, 37(5): 337-344.
[33] [Huang Jin, Liu Yibo, Zhang Fangmin. Responses of agricultural drought in China’s main grain production areas to cimatic changes based on EEMD[J]. Journal of Soil and Water Conservation, 2023, 37(5): 337-344. ]
[34] 鲁洪威, 马释宇, 李婷婷, 等. 基于EMD模型的我国马铃薯产量波动及其成因的时空研究[J]. 中国农业资源区划, 2021, 42(2): 109-119.
[34] [Lu Hongwei, Ma Shiyu, Li Tingting, et al. Temporal-spatial analysis of potato yield fluctuation andits causes in China based on EMD model[J]. Journal of Aericultural Resources and Regional Planning Chinese, 2021, 42(2): 109-119. ]
[35] 张硕, 邓博文, 许瑶瑶, 等. 1958-2019年漠河市气温及降水突变分析[J]. 气候与环境研究, 2020, 25(6): 666-676.
[35] [Zhang Shuo, Deng Bowen, Xu Yaoyao, et al. Abrupt change of temperature and precipitation in Mohe of China from 1958 to 2019[J]. Climatic and Environmental Research, 2020, 25(6): 666-676. ]
[36] 蒋琳, 贾天山, 熊世为, 等. 1970—2019年滁州市降水特征分析[J]. 湖北农业科学, 2022, 61(5): 177-180, 192.
[36] [Jiang Lin, Jia Tianshan, Xiong Shiwei, et al. The characteristic analysis of precipitation in Chuzhou city during 1970-2019[J]. Hubei Agricultural Sciences, 2022, 61(5): 177-180, 192. ]
[37] 王依婷. 基于EEMD-BP组合模型的新疆阿克苏地区地表净太阳辐射预测研究[D]. 上海: 上海第二工业大学, 2021.
[37] [Wang Yiting. Prediction of Surface Net Solar Radiation in Aksu Area of Xinjiang Based on EEMD-BP Combination Model[D]. Shanghai: Shanghai Second Polytechnic University, 2021. ]
[38] 茆美琴, 龚文剑, 张榴晨, 等. 基于EEMD-SVM方法的光伏电站短期出力预测[J]. 中国电机工程学报, 2013, 33(34): 17-24.
[38] [Mao Meiqin, Gong Wenjian, Zhang Liuchen, et al. Short-term photovoltaic generation forecasting based on EEMD-SVM combined method[J]. Proceedings of the CSEE, 2013, 33(34): 17-24. ]
[39] Huang N E, Hen Z, Long S R, et al. The empirical mode decomposition and the hilbert spectrum for nonlinear and non-Stationary time series analysis[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1998, 454(1971): 903-995.
[40] 陈少勇, 邢晓宾, 张康林, 等. 中国西北地区太阳总辐射的气候特征[J]. 资源科学, 2010, 32(8): 1444-1451.
[40] [Chen Shaoyong, Xing Xiaobin, Zhang Kanglin, et al. Climatic characteristics of total solar radiation in Northwest China[J]. Resources Science, 2010, 32(8): 1444-1451. ]
[41] 徐玉貌, 刘红年, 徐桂玉. 大气科学概论[M]. 南京: 南京大学出版社, 2000: 102.
[41] [Xu Yumao, Liu Hongnian, Xu Guiyu. An Introductory Survey of Atmospheric Sciences[M]. Nanjing: Nanjing University Press, 2000: 102. ]
[42] 吴霞, 姜志伟, 蒙荣, 等. 河套平原太阳辐射变化特征及其与气象要素的相互影响[J]. 干旱区研究, 2022, 39(1): 41-53.
[42] [Wu Xia, Jiang Zhiwei, Meng Rong, et al. Variation characteristics of solar radiation and the interaction with meteorological elements in the Hetao Plain[J]. Arid Zone Research, 2022, 39(1): 41-53. ]
[43] 陈娟, 徐丹丹, 罗宇翔, 等. 近50年来云贵高原太阳辐射变化特征及影响[J]. 长江流域资源与环境, 2012, 21(S1): 179-184.
[43] [Chen Juan, Xu Dandan, Luo Yuxiang, et al. Changes in solar radiation and their climatic influences over Yunnan-Guizhou Plateau for 1961-2019[J]. Resources and Environment in the Yangtze Basin, 2012, 21(S1): 179-184. ]
[44] 陈芳, 马英芳, 李维强. 青海高原太阳辐射时空分布特征[J]. 气象科技, 2005, 33(3): 231-234.
[44] [Chen Fang, Ma Yingfang, Li Weiqiang. Distribution characteristics of solar radiation over Qinghai Plateau[J]. Meteorological Science and Technology, 2005, 33(3): 231-234. ]
[45] 郝玉珠, 李兴华, 胡亚男, 等. 内蒙古57年太阳能资源变化规律及影响因子[J]. 太阳能学报, 2021, 42(9): 145-151.
[45] [Hao Yuzhu, Li Xinghua, Hu Yanan, et al. Change rules and influencing factors of 57 years of solar energy resources in Inner Mongolia[J]. Acta Energiae Solaris Sinica, 2021, 42(9): 145-151. ]
文章导航

/