生态与环境

2000—2020年黄土高原NEP时空格局与驱动力

  • 裴宏泽 ,
  • 赵亚超 ,
  • 张廷龙
展开
  • 西北农林科技大学资源环境学院,陕西 杨凌 712100
裴宏泽(2002-),男,主要研究方向为生态环境遥感. E-mail: hzpei7@163.com

收稿日期: 2023-06-30

  修回日期: 2023-08-03

  网络出版日期: 2023-12-01

基金资助

国家自然科学基金项目(41301451)

Analysis of spatial and temporal patterns and drivers of local regional NEP in the Loess Plateau from 2000 to 2020

  • Hongze PEI ,
  • Yachao ZHAO ,
  • Tinglong ZHANG
Expand
  • College of Resources and Environment, Northwest A & F University, Yangling 712100, Shaanxi, China

Received date: 2023-06-30

  Revised date: 2023-08-03

  Online published: 2023-12-01

摘要

黄土高原是中国重要的生态屏障。在全球变化的背景下,黄土高原的碳收支平衡备受关注。本研究基于MOD17A3HGF数据,通过GSMSR模型、趋势分析、差异分析以及地理探测器等方法,分析2000—2020年黄土高原的碳源/汇特征,揭示2000—2020年该区域生态系统净生产力(NEP)的时空格局及其驱动因素。同时,将研究区按经度方向划分为西、中、东三个子区域,比较不同区域内驱动因素的差异性。结果表明:(1) 近20 a黄土高原49.69%的区域从碳源向碳汇转变;NEP随时间波动上升,在东南部高于西北部,多年平均值为12 g C·m-2·a-1。(2) 水分条件是影响NEP空间分布的主要自然因素,而土地利用类型则是影响NEP空间分布的主要人为因素;不同因子间的交互作用对NEP的影响普遍大于单个因子。(3) 西、中、东三个子区域NEP的驱动因子存在明显的空间分异特征,中、西部地区受气候影响较多,以降水、湿度等水分条件为主;东部地区受地形、气候、人类活动等因素综合影响,其中,以土地利用类型为代表的人为干扰最强。

本文引用格式

裴宏泽 , 赵亚超 , 张廷龙 . 2000—2020年黄土高原NEP时空格局与驱动力[J]. 干旱区研究, 2023 , 40(11) : 1833 -1844 . DOI: 10.13866/j.azr.2023.11.13

Abstract

The Loess Plateau is an important ecological barrier in China. In the context of global change, the carbon balance of the region is of great concern. In this study, based on MOD17A3HGF data, we analyzed the carbon source/sink characteristics of the local area of the Loess Plateau from 2000 to 2020 using the geostatistical model of soil respiration (GSMSR) model, trend analysis, difference analysis, and Geodetector, to reveal the spatial and temporal patterns of the region’s net ecosystem productivity (NEP) and its driving factors from 2000 to 2020. Meanwhile, the study area was divided longitudinally into three subregions, west, center, and east, to compare the variability of drivers within different regions. The results showed that: (1) 49.69% of the localized area of the Loess Plateau shifted from a carbon source to a carbon sink within 21 years. NEP fluctuated upward with time, and was higher in the southeast than in the northwest, with a multi-year average of 12 g C·m-2·a-1· (2) Moisture condition was the main natural factor affecting the spatial distribution of NEP, while land use type was the main anthropogenic factor influencing the spatial distribution of NEP. In addition, the influence of the interaction between different factors on NEP was generally greater than that of single factors. The effects of interactions between different factors on NEP were generally greater than those of individual factors. (3) The factors driving NEP in the three subregions of west, central, and east have clear spatial differentiation characteristics, the central and western regions are more affected by climate, with precipitation, humidity, and other moisture conditions as the main ones. The eastern region is affected by a combination of factors such as topography, climate, and human activities, and anthropogenic interference, represented by land use type, is the strongest among these factors. This knowledge can serve as a basis for effective carbon management strategies and ecosystem conservation efforts in the region.

参考文献

[1] Wei X D, Yang J, Luo P P, et al. Assessment of the variation and influencing factors of vegetation NPP and carbon sink capacity under different natural conditions[J]. Ecological Indicators, 2022, 138(22): 108834.
[2] Wang S H, Zhang Y G, Ju W M, et al. Recent global decline of CO2 fertilization effects on vegetation photosynthesis[J]. Science, 2020, 370(6522): 1295-1300.
[3] Zhang L, Wylie K B, Ji L, et al. Upscaling carbon fluxes over the Great Plains grasslands: Sinks and sources[J]. Journal of Geophysical Research, 2011, 116(116): G00J03.
[4] Cui E Q, Bian C Y, Luo Y Q, et al. Spatial variations in terrestrial net ecosystem productivity and its local indicators[J]. Biogeosciences, 2020, 17(23): 6237-6246.
[5] Keenan T F, Prentice I C, Canadell J G, et al. Recent pause in the growth rate of atmospheric CO2due to enhanced terrestrial carbon uptake[J]. Nature Communications, 2016, 7(1): 13428.
[6] Friedlingstein P, O'Sullivan M, Jones M W, et al. Global carbon budget 2020[J]. Earth System Science Data, 2020, 12(4): 3269-3340.
[7] Mao F J, Du H Q, Zhou G M, et al. Simulated net ecosystem productivity of subtropical forests and its response to climate change in Zhejiang Province, China[J]. Science of The Total Environment, 2022, 838(51): 155993.
[8] Wang J, Feng L, Palmer P I, et al. Large Chinese land carbon sink estimated from atmospheric carbon dioxide data[J]. Nature, 2020, 586(7831): 720-723.
[9] Chen L D, Wang J, Fu B J, et al. Land-use change in a small catchment of northern Loess Plateau, China[J]. Agriculture, Ecosystems & Environment, 2001, 86(2): 163-172.
[10] 张海, 王延平, 高鹏程, 等. 黄土高原坡地土壤干层形成机理及补水途径研究[J]. 水土保持学报, 2003, 17(3): 162-164.
[10] [Zhang Hai, Wang Yanping, Gao Pengcheng, et al. Research on mechanism about forming dry layer of slope land and way of supplying water on Loess Plateau[J]. Journal of Soil and Water Conservation, 2003, 17(3): 162-164.]
[11] Chen Y P, Wang K B, Lin Y S, et al. Balancing green and grain trade[J]. Nature Geoscience, 2015, 8(10): 739-741.
[12] 修丽娜, 颜长珍, 钱大文, 等. 生态工程背景下黄土高原植被变化时空特征及其驱动力[J]. 水土保持通报, 2019, 39(4): 214-221, 228.
[12] [Xiu Lina, Yan Changzhen, Qian Dawen, et al. Analysis of spatial-temporal change and driving forces of vegetation in Loess Plateau under background of ecological engineering[J]. Bulletin of Soil and Water Conservation, 2019, 39(4): 214-221, 228.]
[13] 王一, 郝利娜, 许强, 等. 2001—2019年黄土高原植被覆盖度时空演化特征及地理因子解析[J]. 生态学报, 2023, 43(6): 2397-2407.
[13] [Wang Yi, Hao Lina, Xu Qiang, et al. Spatio-temporal variations of vegetation coverage and its geographical factors analysis on the Loess Plateau from 2001 to 2019[J]. Acta Ecologica Sinica, 2023, 43(6): 2397-2407.]
[14] 刘欢欢, 陈印, 刘悦, 等. 基于随机森林模型的黄土高原草地净初级生产力时空格局及未来演变趋势模拟[J]. 干旱区研究, 2023, 40(1): 123-131.
[14] [Liu Huanhuan, Chen Yin, Liu Yue, et al. Simulation of spatial pattern and future trends of grassland net primary productivity in the Loess Plateau based on random forest model[J]. Arid Zone Research, 2023, 40(1): 123-131.]
[15] 王江涛, 杨永崇, 杨梅焕. 基于地理探测器的黄土高原NPP时空变化及驱动力研究[J]. 西安理工大学学报, 2023, 39(1): 12-20.
[15] [Wang Jiangtao, Yang Yongchong, Yang Meihuan. Spatial and temporal variation and driving forces of NPP on the Loess Plateau based on Geodetector[J]. Journal of Xi’an University of Technology, 2023, 39(1): 12-20.]
[16] 周璐红, 曹瑞超. 黄土高原生境质量时空演变及其驱动因素[J]. 水土保持通报, 2022, 42(6): 343-350.
[16] [Zhou Luhong, Cao Ruichao. Spatial-temporal evolution of habitat quality and its influencing factors in Loess Plateau[J]. Bulletin of Soil and Water Conservation, 2022, 42(6): 343-350.]
[17] Li Z, Zheng F L, Liu W Z, et al. Spatial distribution and temporal trends of extreme temperature and precipitation events on the Loess Plateau of China during 1961-2007[J]. Quaternary International, 2010, 226(1-2): 92-100.
[18] 刘凤, 曾永年. 2000—2015年青海高原植被碳源/汇时空格局及变化[J]. 生态学报, 2021, 41(14): 5792-5803.
[18] [Liu Feng, Zeng Yongnian. Analysis of the spatio-temporal variation of vegetation carbon source/sink in Qinghai Plateau from 2000-2015[J]. Acta Ecologica Sinica, 2021, 41(14): 5792-5803.]
[19] Zhao J F, Ma J Y, Zhu Y J. Evaluating impacts of climate change on net ecosystem productivity (NEP) of global different forest types based on an individual tree-based model FORCCHN and remote sensing[J]. Global and Planetary Change, 2019, 182(31): 103010.
[20] Chuai X W, Qi X X, Zhang X Y, et al. Land degradation monitoring using terrestrial ecosystem carbon sinks/sources and their response to climate change in China[J]. Land Degradation & Development, 2018, 29(10): 3489-3502.
[21] Yu G R, Zheng Z M, Wang Q F, et al. Spatiotemporal pattern of soil respiration of terrestrial ecosystems in China: The development of a geostatistical model and its simulation[J]. Environmental Science & Technology, 2010, 44(16): 6074-6080.
[22] Zhang Y, Zhang C B, Wang Z Q, et al. Vegetation dynamics and its driving forces from climate change and human activities in the Three-River Source Region, China from 1982 to 2012[J]. Science of The Total Environment, 2016, 563- 564(45): 210-220.
[23] Zhang J J, Hao X M, Hao H C, et al. Climate change decreased net ecosystem productivity in the arid region of central Asia[J]. Remote Sensing, 2021, 13(21): 4449.
[24] Wang C, Zhao W Z, Zhang Y Y. The change in net ecosystem productivity and its driving mechanism in a mountain ecosystem of arid regions, Northwest China[J]. Remote Sensing, 2022, 14(16): 4046.
[25] Wang J F, Zhang T L, Fu B J. A measure of spatial stratified heterogeneity[J]. Ecological Indicators, 2016, 67: 250-256.
[26] 王劲峰, 徐成东. 地理探测器: 原理与展望[J]. 地理学报, 2017, 72(1): 116-134.
[26] [Wang Jinfeng, Xu Chengdong. Geodetector: Principle and prospective[J]. Acta Geographica Sinica, 2017, 72(1): 116-134.]
[27] Zhang D N, Zhao Y H, Wu J S. Assessment of carbon balance attribution and carbon storage potential in China’s terrestrial ecosystem[J]. Resources Conservation and Recycling, 2023, 189(36): 106748.
[28] Ye X, Chuai X. Carbon sinks/sources’ spatiotemporal evolution in China and its response to built-up land expansion[J]. Journal of Environmental Management, 2022, 321(50): 115863.
[29] Sun W Y, Song X Y, Mu X M, et al. Spatiotemporal vegetation cover variations associated with climate change and ecological restoration in the Loess Plateau[J]. Agricultural and Forest Meteorology, 2015, 209- 210(52): 87-99.
[30] 王兵. 黄土丘陵区流域生态恢复环境响应及其评价[D]. 北京: 中国科学院大学, 2011.
[30] [Wang Bing. Environmental Response and Assessment of Watershed Ecological Restoration in Loess Hilly Region[D]. Beijing: University of Chinese Academy of Sciences, 2011.]
[31] 韩磊, 杨梅丽, 刘钊, 等. 黄土高原典型退耕区生态系统服务权衡与协同关系研究——以延安市为例[J]. 生态学报, 2022, 42(20): 8115-8125.
[31] [Han Lei, Yang Meili, Liu Zhao, et al. Ecosystem service tradeoffs and synergies in typical farmland conversion area of the Loess Plateau: Taking Yan’an city as an example[J]. Acta Ecologica Sinica, 2022, 42(20): 8115-8125.]
[32] 张子龙, 鹿晨昱, 陈兴鹏, 等. 陇东黄土高原农业生态效率的时空演变分析——以庆阳市为例[J]. 地理科学, 2014, 34(4): 472-478.
[32] [Zhang Zilong, Lu Chenyu, Chen Xingpeng, et al. Spatio-temporal evolution of agricultural eco-efficiency in Loess Plateau of east Gansu Province: A case study of Qingyang City[J]. Scientia Geographica Sinica, 2014, 34(4): 472-478.]
[33] 毛盛林, 上官周平. 近20年黄土高原土地利用/植被覆盖变化特征及其成因[J]. 水土保持研究, 2022, 29(5): 213-219.
[33] [Mao Shenglin, Shangguan Zhouping. Characteristics and causes of land use/vegetation coverage of the Loess Plateau in the past 20 years[J]. Research of Soil and Water Conservation, 2022, 29(5): 213-219.]
[34] Oishi A C, Miniat C F, Novick K A, et al. Warmer temperatures reduce net carbon uptake, but do not affect water use, in a mature southern Appalachian forest[J]. Agricultural and Forest Meteorology, 2018, 252(55): 269-282.
[35] Wang M M, Zhao J, Wang S Q, et al. Detection and attribution of positive net ecosystem productivity extremes in China’s terrestrial ecosystems during 2000-2016[J]. Ecological Indicators, 2021, 132(21): 108323.
[36] Fang X, Zhang C, Wang Q, et al. Isolating and quantifying the effects of climate and CO2 changes (1980-2014) on the net primary productivity in arid and semiarid China[J]. Forests, 2017, 8(3): 60.
[37] Yang H F, Zhong X N, Deng S Q, et al. Assessment of the impact of LUCC on NPP and its influencing factors in the Yangtze River basin, China[J]. Catena, 2021, 206(49): 105542.
[38] Brown S, Lugo A E. Trailblazing the carbon cycle of tropical forests from Puerto Rico[J]. Forests, 2017, 8(4): 101.
[39] Baccini A, Walker W, Carvalho L, et al. Tropical forests are a net carbon source based on aboveground measurements of gain and loss[J]. Science, 2017, 358(6360): 230-234.
文章导航

/