生态与环境

青海湖流域NPP动态变化及驱动力

  • 吴雪晴 ,
  • 张乐乐 ,
  • 高黎明 ,
  • 李炎坤 ,
  • 刘轩辰
展开
  • 1.青海师范大学地理科学学院,青海省自然地理与环境过程重点实验室,青海 西宁 810008
    2.青海师范大学,青藏高原地表过程与生态保育教育部重点实验室,青海 西宁 810008
    3.高原科学与可持续发展研究院,青海 西宁 810008
    4.甘肃政法大学网络空间安全学院,甘肃 兰州 730070
吴雪晴(1998-),女,硕士研究生,研究方向为自然地理与生态环境过程. E-mail: 1368418205@qq.ocm

收稿日期: 2023-04-28

  修回日期: 2023-07-17

  网络出版日期: 2023-12-01

基金资助

青海省自然科学基金(2022-ZJ-711);国家自然科学基金(42171467);国家自然科学基金(42001060);国家自然科学基金(41705139)

Dynamic change and driving force of net primary productivity in Qinghai Lake Basin

  • Xueqing WU ,
  • Lele ZHANG ,
  • Liming GAO ,
  • Yankun LI ,
  • Xuanchen LIU
Expand
  • 1. Qinghai Provincial Key Laboratory of Physical Geography and Environmental Processes, College of Geographical Sciences, Qinghai Normal University, Xining 810008, Qinghai, China
    2. Qinghai Normal University, MOE Key Laboratory of Tibetan Plateau Land Surface Processes and Ecological Conservation, Xining 810008, Qinghai, China
    3. Academy of Plateau Science and Sustainability, Xining 810008, Qinghai, China
    4. School of Cyberspace Security,Gansu University of Political Science and Law, Lanzhou 730070, Gansu, China

Received date: 2023-04-28

  Revised date: 2023-07-17

  Online published: 2023-12-01

摘要

对青海湖流域植被净初级生产力(Net Primary Productivity,NPP)以及驱动因子进行分析可以为流域生态管理与可持续发展提供一定的参考。本研究基于Carnegie-Ames-Stanford Approach(CASA)模型估算了青海湖流域NPP值,通过趋势分析、Hurst指数、地理探测器等方法,定量评估了2000—2018年青海湖流域NPP的动态变化及驱动因子。结果表明:从空间分布来看,青海湖流域多年平均植被NPP为218.88 g C·m-2,年平均NPP的高值分布在青海湖北部和南部,最高达到375.85 g C·m-2,低值分布在青海湖东岸,最低为0.11 g C·m-2。从时间变化看,2000—2018年流域年平均NPP表现为上升趋势,增幅为1.61 g C· m-2·a-1,2018年达最高值为247.30 g C·m-2。季节变化表明7月NPP最高,1月NPP最低。在NPP未来变化趋势上,Hurst指数小于0.5的区域占比为75.6%,说明青海湖流域植被NPP未来变化趋势可能与现在相反。地理探测器的结果显示单因子探测中土地利用是植被NPP变化的主要驱动力,交互探测中最强主导交互因子是海拔和土地利用。土地利用类型受自然因素影响较大,我们应加强对流域地形因素以及人为活动的关注。

本文引用格式

吴雪晴 , 张乐乐 , 高黎明 , 李炎坤 , 刘轩辰 . 青海湖流域NPP动态变化及驱动力[J]. 干旱区研究, 2023 , 40(11) : 1824 -1832 . DOI: 10.13866/j.azr.2023.11.12

Abstract

The analysis of Net Primary Productivity (NPP) and the driving factors in the Qinghai Lake Basin can provide certain references for the ecological management and sustainable development of the basin. This study estimated the NPP value of the Qinghai Lake Basin based on the Carnegie-Ames-Stanford Approach (CASA) model and quantitatively evaluated the dynamic changes and driving factors of NPP in the Qinghai Lake Basin between 2000 and 2018 through trend analysis, Hurst index, and Geographic Detector. From the perspective of spatial distribution, the results show that the annual average NPP value of the Qinghai Lake Basin was 218.88 g C·m-2. The highest value of the annual average NPP was distributed in the north and south of the Qinghai Lake (375.85 g C·m-2) and the lowest value was distributed on the east bank of the Qinghai Lake (0.11 g C·m-2). From the perspective of time change, the annual average NPP of the basin showed an upward trend between 2000 and 2018, with an increase of 1.61 g C·m-2·a-1, reaching the highest value of 247.30 g C·m-2 in 2018. The seasonal variation showed that the NPP value was highest in July and lowest in January. In the future trend of NPP, Hurst index of less than 0.5 accounted for 75.6% of the study area, indicating that the future trend of NPP of vegetation in the Qinghai Lake Basin may be opposite to the present. Land use types are greatly affected by natural factors; therefore, more attention should be paid to watershed topographic factors and human activities.

参考文献

[1] Yan Y C, Liu X P, Ou J P, et al. Assimilating multi-source remotely sensed data into a light use efficiency model for net primary productivity estimation[J]. International Journal of Applied Earth Observation and Geoinformation, 2018, 72: 11-25.
[2] Jones M O, Runing S W, Kimball J S, et al. Terrestrial primary productivity indicators for inclusion in the national climate indicators system[J]. Climatic Change, 2020, 163(4): 1855-1868.
[3] Zhang Y, Hu Q W, Zou F L. Spatio-temporal changes of vegetation Net Primary Productivity and its driving factors on the Qinghai-Tibetan Plateau from 2001 to 2017[J]. Remote Sensing, 2021, 13(8): 1566-1587.
[4] 杨安乐, 张小平, 李宗省, 等. 气候变化和人类活动对祁连山国家公园植被净初级生产力的定量影响[J]. 生态学报, 2023, 43(5): 1784-1792.
[4] [Yang Anle, Zhang Xiaoping, Li Zongxing, et al. Quanitative analysis of the impacts of climate change and human activities on vegetation NPP in the Qilian Mountain National Park[J]. Acta Ecologica Sinica, 2023, 43(5): 1784-1792.]
[5] 秦泗国, 钟国辉, 王景升. 那曲草地气候格局对草地 NPP 的影响及载畜量研究[J]. 干旱区资源与环境, 2010, 24(7): 159-164.
[5] [Qin Siguo, Zhong Guohui, Wang Jingsheng. The influence of climate patterns on grassland NPP and the study on livestock carrying capacity in Naqu[J]. Journal of Arid Land Resources and Environment, 2010, 24(7): 159-164.]
[6] 崔珍珍, 马超, 陈登魁. 1982—2015 年科尔沁沙地植被时空变化及气候响应[J]. 干旱区研究, 2021, 38(2): 536-544.
[6] [Cui Zhenzhen, Ma Chao, Chen Dengkui. Spatiotemporal variation of vegetation in the Horqin Sandy Land and its response to climate change from 1982-2015[J]. Arid Zone Research, 2021, 38(2): 536-544.]
[7] Liu J, Meng B P, Ge J, et al. Spatio-temporal dynamic changes of grassland NPP in Gannan prefecture, as determined by the CASA model[J]. Acta Prataculturae Sinica, 2019, 28(6): 19-32.
[8] 周妍妍, 朱敏翔, 郭晓娟, 等. 疏勒河流域气候变化和人类活动对植被NPP的相对影响评价[J]. 生态学报, 2019, 39(14): 5127-5137.
[8] [Zhou Yanyan, Zhu Minxiang, Guo Xiaojuan, et al. Relative effects of climate change and human activities on net primary productivity in Shule River Basin[J]. Acta Ecologica Sinica, 2019, 39(14): 5127-5137.]
[9] 陈炳铭, 赵善超, 孙丰华, 等. 气候变化和人类活动对干旱区垂直自然带NPP的影响[J]. 生态学杂志, 2023, 42(6): 1474-1483.
[9] [Chen Bingming, Zhao Shanchao, Sun Fenghua, et al. Impacts of climate change and human activities on the NPP of vertical natural belts in arid zones[J]. Chinese Journal of Ecology, 2023, 42(6): 1474-1483.]
[10] Ding N, Piao D F, Cui G S, et al. The impacts of climate variation and land use/cover change on net primary productivity in the Tumen River Basin[J]. Landscape and Ecological Engineering, 2022, 18(2): 157-170.
[11] Ge W Y, Deng L Q, Wang F, et al. Quantifying the contributions of human activities and climate change to vegetation net primary productivity dynamics in China from 2001 to 2016[J]. Science of the Total Environment, 2021, 773: 145648.
[12] Yan F Q. Effects of climate changes on net primary productivity variation in the marsh area of the Sanjiang Plain[J]. Frontiers in Ecology and Evolution, 2022, 10: 1002397.
[13] 孙治娟, 谢世友. 基于地理探测器的云南省净初级生产力时空演变及因子探测[J]. 生态学杂志, 2021, 40(12): 3836-3848.
[13] [Sun Zhijuan, Xie Shiyou. Spatiotemporal variation in net primary productivity and factor detection in Yunnan Province based on geodetector[J]. Chinese Journal of Ecology, 2021, 40(12): 3836-3848.]
[14] 吴恒飞, 陈克龙, 张乐乐. 气候变化下青海湖流域生态健康评价研究[J]. 生态科学, 2022, 41(4): 41-48.
[14] [Wu Hengfei, Chen Kelong, Zhang Lele, et al. Study on ecological health evaluation of Qinghai Lake Basin under climate change[J]. Ecological Science, 2022, 41(4): 41-48.]
[15] 张乐乐, 高黎明, 陈克龙. 青海湖流域瓦颜山湿地辐射平衡和地表反照率变化特征[J]. 冰川冻土, 2018, 40(6): 1216-1222.
[15] [Zhang Lele, Gao Liming, Chen Kelong. The variation characteristics of radiation balance and surface albedo in Wayanshan Wetland in the Qinghai Lake watershed[J]. Journal of Glaciology and Geocryology, 2018, 40(6): 1216-1222.]
[16] 乔凯, 郭伟. 青海湖流域植被的净初级生产力估算[J]. 水土保持通报, 2016, 36(6): 204-209.
[16] [Qiao Kai, Guo Wei. Estimating net primary productivity of alpine grassland in Qinghai Lake Basin[J]. Bulletin of Soil and Water Conservation, 2016, 36(6): 204-209.]
[17] 郑中, 祁元, 潘小多, 等. 基于WRF模式数据和CASA模型的青海湖流域草地NPP估算研究[J]. 冰川冻土, 2013, 35(2): 465-474.
[17] [Zheng Zhong, Qi Yuan, Pan Xiaoduo, et al. Estimating the grassland NPP in Qinghai Lake basin based on WRF model data and CASA model[J]. Journal of Glaciology and Geocryology, 2013, 35(2): 465-474.]
[18] Wu C Y, Chen K L, You X, et al. Improved CASA model based on satellite remote sensing data: Simulating net primary productivity of Qinghai Lake Basin alpine grassland[J]. Geoscientific Model Development, 2022, 15(17): 6919-6933.
[19] Zhang J L, Qi Y, Yang R, et al. Impacts of climate change and land use/cover change on the net primary productivity of vegetation in the Qinghai Lake Basin[J]. International Journal of Environmental Research and Public Health, 2023, 20(3): 2179.
[20] Wang Z G, Cao S K, Cao G C, et al. Effects of vegetation phenology on vegetation productivity in the Qinghai Lake Basin of the northeastern Qinghai-Tibet Plateau[J]. Arabian Journal of Geosciences, 2021, 14(11): 1030.
[21] 高黎明, 张乐乐, 陈克龙. 青海湖流域湿地小气候特征[J]. 干旱区研究, 2019, 36(1): 186-192.
[21] [Gao Liming, Zhang Lele, Chen Kelong. Microclimate in an alpine wetland in the Qinghai Lake Basin[J]. Arid Zone Research, 2019, 36(1): 186-192.]
[22] Potter C S, Randerson J, Field C B, et al. Terrestrial ecosystem production: A process model based on globe satellite and surface data[J]. Globe Biogeochemical Cycle, 1993, 7(4): 811-841.
[23] 朱文泉, 潘耀忠, 龙中华, 等. 基于GIS和RS的区域陆地植被NPP估算——以中国内蒙古为例[J]. 遥感学报, 2005, 20(3): 300-307.
[23] [Zhu Wenquan, Pan Yaozhong, Long Zhonghua, et al. Estimating net primary productivity of terrestrial vegetation based on GIS and RS: A case study in Inner Mongolia, China[J]. Journal of Remote Sensing, 2005, 20(3): 300-307.]
[24] 朱文泉, 潘耀忠, 张锦水. 中国陆地植被净初级生产力遥感估算[J]. 植物生态学报, 2007, 31(3): 413-424.
[24] [Zhu Wenquan, Pan Yaozhong, Zhang Jinshui. Estimation of Net Primary Productivity of Chinese terrestrial vegetation based on remote sensing[J]. Journal of Plant Ecology, 2007, 31(3): 413-424.]
[25] 阳坤, 何杰, 唐文君, 等. 中国区域地面气象要素驱动数据集(1979—2018)[DB/OL]. 时空三极环境大数据平台, 2019.
[25] [Yang Kun, He Jie, Tang Wenjun, et al. China meteorological forcing dataset (1979-2018)[DB/OL]. A Big Earth Data Platform for Three Poles, 2019.]
[26] 曹红梅. 黄河流域植被NPP时空格局演变及影响因素分析[D]. 开封: 河南大学, 2022.
[26] [Cao Hongmei. Temporal and Spatial Pattern Evolution and Influencing Factors of Vegetation NPP in the Yellow River Basin[D]. Kaifeng: Henan University, 2022.]
[27] 刘文瑞, 李晓婷, 李彤, 等. 基于MODIS和CASA模型的伊春市森林植被NPP变化特征及其影响因子分析[J]. 生态学杂志, 2022, 41(1): 150-158.
[27] [Liu Wenrui, Li Xiaoting, Li Tong, et al. Spatiotemporal variations of forest NPP and related driving factors based on MODIS and CASA models in Yichun[J]. Chinese Journal of Ecology, 2022, 41(1): 150-158.]
[28] Zhang Y Z, Gong J, Yang J X, et al. Evaluation of future trends based on the characteristics of Net Primary Production (NPP) Changes over 21 Years in the Yangtze River Basin in China[J]. Sustainability, 2023, 15(13): 10606.
[29] 王劲峰, 徐成东. 地理探测器: 原理与展望[J]. 地理学报, 2017, 72(1): 116-134.
[29] [Wang Jinfeng, Xu Chengdong. Geodetector: Principle and prospective[J]. Acta Geographica Sinica, 2017, 72(1): 116-134.]
[30] 陈舒婷, 郭兵, 杨飞, 等. 2000—2015年青藏高原植被NPP时空变化格局及其对气候变化的响应[J]. 自然资源学报, 2020, 35(10): 2511-2527.
[30] [Chen Shuting, Guo Bing, Yang Fei, et al. Spatial and temporal patterns of NPP and its response to climate change in the Qinghai-Tibet Plateau from 2000 to 2015[J]. Journal of Natural Resources, 2020, 35(10): 2511-2527.]
[31] Wu X Q, Zhang L L, Gao L M, et al. Change and tradeoff/synergy analysis of watershed ecosystem services: A case study of Qinghai Lake Basin[J]. Sustainability, 2023, 15(15): 11711.
[32] 高黎明, 张乐乐. 青海湖流域植被盖度时空变化研究[J]. 地球信息科学学报, 2019, 21(9): 1318-1329.
[32] [Gao Liming, Zhang Lele. Spatialtemporal dynamics of the vegetation coverage in Qinghai lake Basin[J]. Journal of Geo-information Science, 2019, 21(9): 1318-1329.]
[33] 张涛, 曹广超, 曹生奎, 等. 2000—2012年青海湖流域NPP时空分布特征[J]. 中国沙漠, 2015, 35(4): 1072-1080.
[33] [Zhang Tao, Cao Guangchao, Cao Shengkui, et al. Spatialtemporal characteristics of the vegetation net primary production in the Qinghai Lake basin from 2000 to 2012[J]. Journal of Desert Research, 2015, 35(4): 1072-1080.]
文章导航

/