植物生态

采煤沉陷区模拟土壤侵蚀胁迫对黑沙蒿生理生长特性的影响

  • 郑欣如 ,
  • 王树森 ,
  • 王博 ,
  • 张欣 ,
  • 刘静 ,
  • 胡晶华 ,
  • 李诗文 ,
  • 袁亚楠 ,
  • 王丫博
展开
  • 1.内蒙古农业大学沙漠治理学院,内蒙古 呼和浩特 010018
    2.内蒙古师范大学地理科学学院,内蒙古 呼和浩特 010022
    3.水利部牧区水利科学研究所,内蒙古 呼和浩特 010020
郑欣如(1998-),女,硕士研究生,主要研究方向为干旱区植被恢复. E-mail: zhengxinru6008@qq.com

收稿日期: 2023-04-15

  修回日期: 2023-06-12

  网络出版日期: 2023-12-01

基金资助

内蒙古自治区科技计划项目(2022YFHH0045)

Simulated soil erosion stress effect on physiological and growth characteristics of Artemisia ordosica at coal mining subsidence areas

  • Xinru ZHENG ,
  • Shusen WANG ,
  • Bo WANG ,
  • Xin ZHANG ,
  • Jing LIU ,
  • Jinghua HU ,
  • Shiwen LI ,
  • Yanan YUAN ,
  • Yabo WANG
Expand
  • 1. College of Desert Control Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, Inner Mongolia, China
    2. College of Geographical Science, Inner Mongolia Normal University, Hohhot 010022, Inner Mongolia, China
    3. Institute of Water Resources for Pasturing Area of the Ministry of Water Resources, Hohhot 010020, Inner Mongolia, China

Received date: 2023-04-15

  Revised date: 2023-06-12

  Online published: 2023-12-01

摘要

为揭示半干旱采煤沉陷区水土保持植物的逆境生存策略,以2~3 a生黑沙蒿(Artemisia ordosica)为试验材料,对其根部进行原位根系断裂试验模拟土壤侵蚀胁迫,设置重度胁迫(P1)、中度胁迫(P2)、轻度胁迫(P3)及对照(CK)四个处理,研究黑沙蒿生长指标、光合特性及生理应激反应对胁迫的响应变化。结果表明:(1) 土壤侵蚀胁迫显著抑制黑沙蒿生长速率,侵蚀破坏程度越大,生长抑制越显著,重度胁迫后黑沙蒿株高、冠幅、枝条长度、枝条直径增速较对照组平均下降36.91%、43.90%、69.76%、66.76%。(2) 土壤侵蚀胁迫对黑沙蒿光合作用形成明显的负面作用,且侵蚀破坏程度越大,负反馈越强烈,重度胁迫后黑沙蒿叶片净光合速率、气孔导度、胞间二氧化碳浓度、蒸腾速率、叶绿素含量较对照组分别降低39.86%、59.26%、7.82%、51.55%、12.33%。(3) 侵蚀破坏发生70 d内,黑沙蒿叶片SOD活性、POD活性和CAT活性与对照组相比呈先升高后降低随后趋于平稳趋势,MDA含量在一定范围内波动,冗余分析表明SOD活性对黑沙蒿光合特性的影响最为显著。综合分析说明,采煤沉陷区土壤侵蚀破坏造成的黑沙蒿根系断裂会降低其生长速率,并抑制叶片光合作用,但黑沙蒿可通过调节自身抗氧化酶活性来维持其基本生长,是具有优良抗逆性与适应性的侵蚀区生态修复植物种。

本文引用格式

郑欣如 , 王树森 , 王博 , 张欣 , 刘静 , 胡晶华 , 李诗文 , 袁亚楠 , 王丫博 . 采煤沉陷区模拟土壤侵蚀胁迫对黑沙蒿生理生长特性的影响[J]. 干旱区研究, 2023 , 40(11) : 1806 -1814 . DOI: 10.13866/j.azr.2023.11.10

Abstract

To reveal the survival strategy of plants in semi-arid coal mining subsidence areas faced with soil erosion stress, 2-3-year-old Artemisia ordosica plants were used as the test materials and in-situ root structure destruction tests were carried out at four levels: severe stress (P1), moderate stress (P2), mild stress (P3), and control (CK). The changes in growth indices, photosynthetic characteristics, and physiological traits of A. ordosica were measured. The results showed that soil erosion stress significantly inhibited the growth rate of A. ordosica, and that the greater the degree of simulated damage, the more significant the growth inhibition. After severe stress, the growth rates of plant height, crown width, branch length, and branch diameter of A. ordosica decreased by an average of 36.91%, 43.90%, 69.76%, and 66.76 %, respectively, compared to control plants. Soil erosion stress also conferred a significant negative effect on the photosynthesis of A. ordosica, and the greater the degree of damage, the stronger the negative effect. After severe stress, the net photosynthetic rate, stomatal conductance, intercellular carbon dioxide concentration, transpiration rate, and chlorophyll content of A. ordosica decreased by 39.86%, 59.26%, 7.82%, 51.55%, and 12.33%, respectively, compared to control plants. After 70 days of erosion stress, the activities of superoside dismutase (SOD), peroxidase (POD), and oxidoreductase (CAT) in A. ordosica initially increased and later decreased, and tended to be stable when compared with the control. The malondialdehyde (MDA) content fluctuated within a certain range. Redundancy analysis showed that the level of SOD activity had the most significant effect on the photosynthetic characteristics of A. ordosica. Comprehensive analysis showed that the root fracture of A. ordosica caused by soil erosion in coal mining subsidence areas will reduce its growth rate and inhibit photosynthesis. However, A. ordosica can maintain its growth by regulating the activity of its antioxidase systems and can therefore be considered to be an ecological restoration plant species due to its excellent resistance and adaptability in erosive areas.

参考文献

[1] 燕玲玲, 高秉丽, 徐彩仙, 等. 半干旱黄土丘陵区县域社会生态系统脆弱性时空变化及其影响因素——以定西市安定区为例[J]. 水土保持研究, 2020, 27(5): 373-380, 388.
[1] [Yan Lingling, Gao Bingli, Xu Caixian, et al. Spatial and temporal variability of social-ecological system vulnerability and its influencing factors in a loess hilly region—a case study of Anding District of Dingxi[J]. Research of Soil and Water Conservation, 2020, 27(5): 373-380, 388.]
[2] Berdugo M, DelgadoBaquerizo M, Soliveres S, et al. Global ecosystem thresholds driven by aridity[J]. Science, 2020, 367(6479): 787-790.
[3] Yoginder P, Chugh. Concurrent mining and reclamation for underground coal mining subsidence impacts in China[J]. International Journal of Coal Science & Technology, 2018, 5(1): 18-35.
[4] 王博, 包玉海, 刘静, 等. 半干旱矿区侵蚀营力对黑沙蒿根系生长特性的影响及其自修复[J]. 生态学杂志, 2022, 41(2): 263-269.
[4] [Wang Bo, Bao Yuhai, Liu Jing, et al. Effects of erosive agent on root growth and self-healing of Artemisia ordosica in semi-arid mining site[J]. Chinese Journal of Ecology, 2022, 41(2): 263-269.]
[5] 张凯, 王顺洁, 高霞, 等. 煤炭开采下神东矿区土壤含水率的空间变异特征及其与土质和植被的响应关系[J]. 天津师范大学学报(自然科学版), 2022, 42(6): 53-61.
[5] [Zhang Kai, Wang Shunjie, Gao Xia, et al. Spatial variability of soil moisture content and the response relationship between soil moisture content and soil quality and vegetation under coal mining in Shendong Mining Area[J]. Journal of Tianjin Normal University (Natural Science Edition), 2022, 42(6): 53-61.]
[6] Hao S, Wang Y, Yan Y, et al. A review on plant responses to salt stress and their mechanisms of salt resistance[J]. Horticulturae, 2021, 7(6): 132.
[7] 张颖, 朱铭强, 李浩, 等. 半干旱黄土丘陵区4种灌木树种的光合特性研究[J]. 西北农林科技大学学报(自然科学版), 2012, 40(3): 65-70.
[7] [Zhang Ying, Zhu Mingqiang, Li Hao, et al. Photosynthetic and physiological characters of four shrub species in the Loess Hilly-Gully Region[J]. Journal of Northwest A & F University (Natural Science Edition), 2012, 40(3): 65-70.]
[8] 徐梦琦, 高艳菊, 张志浩, 等. 干旱胁迫对疏叶骆驼刺幼苗生长和生理的影响[J]. 干旱区研究, 2023, 40(2): 257-267.
[8] [Xu Mengqi, Gao Yanju, Zhang Zhihao, et al. Effects of drought stress on growth and physiology of Alhagi sparsifolia seedlings[J]. Arid Zone Research, 2023, 40(2): 257-267.]
[9] Tartoura A K, Youssef A S. Stimulation of ROS-scavenging systems in squash (Cucurbita pepo) plants by compost supplementation under normal and low temperature conditions[J]. Scientia Horticulturae, 2011, 130(4): 862-868.
[10] 毛小涛, 任立飞, 白文明, 等. 断根对紫花苜蓿产量及根系形态的影响[J]. 草原与草坪, 2023, 43(1): 115-121.
[10] [Mao Xiaotao, Ren Lifei, Bai Wenming, et al. Effect of tilling on yield and root morphology of alfalfa[J]. Grassland And Turf, 2023, 43(1): 115-121.]
[11] 张红, 崔丽娜, 孟佳佳, 等. 断根对盐胁迫下玉米生长、光合及叶片抗氧化酶的影响[J]. 应用生态学报, 2012, 23(12): 3377-3384.
[11] [Zhang Hong, Cui Lina, Meng Jiajia, et al. Effects of partial root excision on the growth, photosynthesis, and antioxidant enzyme activities of maize under salt stress[J]. Chinese Journal of Applied Ecology, 2012, 23(12): 3377-3384.]
[12] 田迅, 朱铁霞, 乌日娜, 等. 断根对菊芋块茎产量及品质的影响[J]. 草业科学, 2015, 32(12): 2083-2088.
[12] [Tian Xun, Zhu Tiexia, Wu Rina, et al. Effects of root cutting on tuber yield and quality in Helianthus tuberosus[J]. Pratacultural Science, 2015, 32(12): 2083-2088.]
[13] 王斯妤, 王璠, 涂贵庆, 等. 断根处理对猕猴桃生长势及果实品质的影响初探[J]. 中国果树, 2022, 64(12): 32-37.
[13] [Wang Siyu, Wang Fan, Tu Guiqing, et al. Effects of root-cutting on vegetative growth and fruit quality of kiwifruit[J]. China Fruits, 2022, 64(12): 32-37.]
[14] 康博文, 刘建军, 孙建华, 等. 陕北毛乌素沙漠黑沙蒿根系分布特征研究[J]. 水土保持研究, 2010, 17(4): 119-123.
[14] [Kang Bowen, Liu Jianjun, Sun Jianhua, et al. Study on root distribution of Artemisa ordosica in Mu Us Sandy Land[J]. Research of Soil and Water Conservation, 2010, 17(4): 119-123.]
[15] 胡文玉, 王兴理, 玄英淑. 二甲基亚砜法测定叶绿素含量[J]. 辽宁农业科学, 1984, 25(1): 38-41.
[15] [Hu Wenyu, Wang Xingli, Xuan Yingshu. Determination of chlorophyll content by dimethyl sulfoxide method[J]. Liaoning Agricultural Sciences, 1984, 25(1): 38-41.]
[16] 李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000.
[16] [Li Hesheng. Plant Physiological and Biochemical Experiment Principle and Technology[M]. Beijing: Higher Education Press, 2000.]
[17] 莫晓丽, 黄亚辉. 茶树主要逆境胁迫反应及其适应逆境的生理机制[J]. 茶叶学报, 2021, 62(4): 185-190.
[17] [Mo Xiaoli, Huang Yahui. Responses and resistance mechanisms of tea plants to stresses—a review[J]. Acta Tea Sinica, 2021, 62(4): 185-190.]
[18] Toldam-Andersen T B, Jensen N L, Decker I, et al. Effects of root pruning in sour cherry (Prunus cerasus) stevnsbaer[J]. Acta Horticulturae, 2007, 732(732): 439-442.
[19] 孙金华. AM真菌对模拟采煤沉陷根系损伤生理生化影响及修复效应[D]. 北京: 中国矿业大学(北京), 2017.
[19] [Sun Jinhua. The Physiology Biochemistry and Remediation Effect of AM Fungi on Damage Roots in Simulated Mining Subsidence[D]. Beijing: China University of Mining and Technology (Beijing), 2017.]
[20] 张欣, 刘铁军, 郭建英, 等. 采煤沉陷区模拟侵蚀破坏对小叶锦鸡儿光合生理特性的影响[J]. 西北林学院学报, 2022, 37(5): 24-29, 79.
[20] [Zhang Xin, Liu Tiejun, Guo Jianying, et al. Effects of simulated erosion damage on photosynthetic and physiological characteristics of Caragana microphylla in Coal Mining Subsidence Area[J]. Journal of Northwest Forestry University, 2022, 37(5): 24-29, 79.]
[21] Lobet G, Couvreur V, Meunier F, et al. Plant water uptake in drying soils[J]. Plant Physiology, 2014, 164(4): 1619-1627.
[22] 周小梅, 董萌, 余红兵, 等. 促生菌对Cd胁迫下蒌蒿光合特性的影响[J]. 草地学报, 2022, 30(2): 348-355.
[22] [Zhou Xiaomei, Dong Meng, Yu Hongbing, et al. Effects of plant growth-promoting bacteria on photosynthetic characteristics of Artemisia selengensis under cadmium stress[J]. Acta Agrestia Sinica, 2022, 30(2): 348-355.]
[23] 赵宁. 不同育苗方式及切根对苗木根系形态的影响[D]. 郑州: 河南农业大学, 2006.
[23] [Zhao Ning. The Effects on Root Morphology for diffrent Breeding Seedling Patterns and Cutting Roots[D]. Zhengzhou: Henan Agricultural University, 2006.]
[24] 冯志培. 侧柏幼苗对切根的生理生态响应和蛋白质组学分析[D]. 郑州: 河南农业大学, 2020.
[24] [Feng Zhipei. Ecophysiology Responses and Proteomic Analysis of Platycladus orientalis Seedlings to Root Pruning[D]. Zhengzhou: Henan Agricultural University, 2020.]
[25] 苏春莉, 段姚, 顾振瀛, 等. 水分胁迫对闽楠幼苗生理及光合特性的影响[J]. 中南林业科技大学学报, 2022, 42(6): 85-92.
[25] [Su Chunli, Duan Yao, Gu Zhenying, et al. Effects of water stress on the physiological and photosynthetic characteristics of Phoebe bournei seedlings[J]. Journal of Central South University of Forestry & Technology, 2022, 42(6): 85-92.]
[26] 庞进平, 王永生. 油菜幼苗光合及叶绿素荧光参数对干旱胁迫的响应及其抗旱性分析[J]. 西北植物学报, 2023, 43(2): 276-284.
[26] [Pang Jinping, Wang Yongsheng. Photosynthetic and chlorophyll fluorescence responses of rape seedlings to drought stress and its drought resistance evaluation[J]. Atca Botanica Boreall-Occidentalia Sinica, 2023, 43(2): 276-284.]
[27] 李跃辉, 司端惠, 王旺银, 等. 光系统Ⅱ光驱动CO2同化的光合作用[J]. 催化学报, 2023, 44(1): 117 -126.
[27] [Li Yuehui, Si Duanhui, Wang Wangyin, et al. Light-driven CO2 assimilation by photosystem II and its relation to photosynthesis[J]. Chinese Journal of Catalysis, 2023, 44 (1): 117-126.]
[28] 柳文杰, 刘顺汉, 辛福梅, 等. 砂生槐幼苗生长及生理变化对切根强度的响应[J]. 浙江大学学报(农业与生命科学版), 2021, 47(2): 243-250.
[28] [Liu Wenjie, Liu Shunhan, Xin Fumei, et al. Response of growth and physiological changes of Sophora moorcroftiana seedlings to root-cutting intensity[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(2): 243-250.]
[29] 拉本, 胡娟, 张旭萍. 干旱胁迫对植物生理的影响以及分子机制的响应研究进展[J]. 青海草业, 2022, 31(4): 31-35.
[29] [La Ben, Hu Juan, Zhang Xuping. Research progress on the effect of drought on plant physiology and the response of molecular mechanism[J]. Qinghai Prataculture, 2022, 31(4): 31-35.]
[30] 汤东, 程平, 杨建军, 等. 天山北坡山前植物对干旱胁迫的生理响应[J]. 干旱区研究, 2021, 38(6): 1683-1694.
[30] [Tang Dong, Cheng Ping, Yang Jianjun, et al. Physiological responses of plants to drought stress in the Northern Piedmont, Tianshan Mountains[J]. Arid Zone Research, 2021, 38(6): 1683-1694.]
[31] 王艺臻, 丁国栋, 崔欣然, 等. 盐碱复合胁迫对油沙豆生长和光合特性的影响[J]. 干旱区资源与环境, 2022, 36(5): 146-152.
[31] [Wang Yizhen, Ding Guodong, Cui Xinran, et al. Effects of saline-alkali stress on the growth and photosynthetic characteristics of Cyperus esculentus and the responses of protective enzymes[J]. Journal of Arid Land Resources and Environment, 2022, 36(5): 146-152.]
[32] Batinic-Haberle I, Tovmasyan A, Roberts E R H, et al. SOD therapeutics: Latest insights into their structure-activity relationships and impact on the cellular redox-based signaling pathways[J]. Antioxid & Redox Signal, 2014, 20(15): 2372-2415.
[33] 王晓雪, 李越, 张斌, 等. 干旱胁迫及复水对燕麦根系生长及生理特性的影响[J]. 草地学报, 2020, 28(6): 1588-1596.
[33] [Wang Xiaoxue, Li Yue, Zhang Bin, et al. Effects of drought stress and rehydration on root growth and physiological characteristics of oats[J]. Acta Agrestia Sinica, 2020, 28(6): 1588-1596.]
[34] 杨果果, 刘伟超, 范贝贝, 等. 切根对侧柏实生苗抗氧化酶和渗透调节物质的影响[J]. 河南农业科学, 2017, 46(7): 92-96.
[34] [Yang Guoguo, Liu Weichao, Fan Beibei, et al. Effects of root-cutting on antioxidant enzyme system and osmotic adjustment substances of Platvcladus orientalis[J]. Journal of Henan Agricultural Sciences, 2017, 46(7): 92-96.]
文章导航

/