水土资源

共和盆地不同灌木群落生物土壤结皮理化性质差异

  • 张曼玉 ,
  • 王志涛 ,
  • 邓磊 ,
  • 周虹
展开
  • 1.青海大学农牧学院,青海 西宁 810016
    2.青海大学农林科学院,青海 西宁 810016
    3.青海省林业和草原项目服务中心,青海 西宁 810016
张曼玉(1998-),女,硕士研究生,主要从事干旱区土壤生态学研究. E-mail: 2081452199@qq.com

收稿日期: 2023-02-22

  修回日期: 2023-06-05

  网络出版日期: 2023-12-01

基金资助

青海省重点研发与转化计划(2022-NK-168)

Differences in the physical and chemical properties of biological soil crusts in different shrub communities in the Gonghe Basin

  • Manyu ZHANG ,
  • Zhitao WANG ,
  • Lei DENG ,
  • Hong ZHOU
Expand
  • 1. College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, Qinghai, China
    2. Academy of Agricultural and Forestry Sciences, Qinghai University, Xining 810016, Qinghai, China
    3. Qinghai Provincial Forestry and Grassland Project Service Center, Xining 810016, Qinghai, China

Received date: 2023-02-22

  Revised date: 2023-06-05

  Online published: 2023-12-01

摘要

探究青海共和盆地不同灌木群落生物土壤结皮(Biological Soil Crusts,BSCs)理化性质差异,为加强生物土壤结皮资源的保护与合理利用提供理论参考。选取共和盆地沙蒿(Artemisia desertorum)、小叶锦鸡儿(Caragana microphylla)和乌柳(Salix cheilophila)群落中不同发育阶段的生物土壤结皮为研究对象,野外取样结合室内分析,研究其颗粒组成及养分特征。结果表明:三种灌木群落生物土壤结皮的颗粒组成均以沙粒为主(45%~90%),其中,小叶锦鸡儿沙粒含量>乌柳>沙蒿,且其含量均显著低于灌丛间裸沙。乌柳群落生物土壤结皮全氮、全碳、有机质、有效磷、速效钾、碱解氮、全磷含量均显著高于沙蒿、小叶锦鸡儿群落,且随生物土壤结皮发育,各含量在三种灌木群落中呈增加趋势。灌木群落对生物土壤结皮理化性质的影响程度最高,且灌木生物量与生物土壤结皮盖度、厚度、全氮、全碳、有机质、有效磷、速效钾、碱解氮、全磷呈显著正相关,与沙粒含量呈显著负相关(P<0.05)。灌木群落有效改良共和盆地沙地生物土壤结皮土壤结构,沙蒿群落更有利于土壤的细化,乌柳群落更有利于养分蓄积。

本文引用格式

张曼玉 , 王志涛 , 邓磊 , 周虹 . 共和盆地不同灌木群落生物土壤结皮理化性质差异[J]. 干旱区研究, 2023 , 40(11) : 1797 -1805 . DOI: 10.13866/j.azr.2023.11.09

Abstract

Exploring the differences in the physical and chemical properties of biological soil crusts (BSCs) in different shrub communities in the Gonghe Basin of Qinghai Province to provide theoretical reference for the protection and rational utilization of BSCs resources. The BSCs at different stages of Artemisia desertorum, Caragana microphylla, Salix cheilophila communities in the Gonghe Basin were investigated. Particle composition and nutrient characteristics were studied through field sampling and indoor analysis. The results showed that the particle composition of BSCs in the three shrub communities was dominated by sand (45%-90%). The sand content of Caragana microphylla>Salix cheilophila>Artemisia desertorum was significantly higher than that of bare sand between shrubs. The contents of total nitrogen, total carbon, organic matter, available phosphorus, available potassium, alkali-hydrolyzable nitrogen, total phosphorus in the BSCs of the Salix cheilophila community were significantly higher than other, and the contents increased with the development of BSCs in the three shrub communities. The shrub community mostly influenced the physical and chemical properties of BSCs, and the shrub biomass was significantly positively correlated with the coverage, thickness, total nitrogen, total carbon, organic matter, available phosphorus, available potassium, available nitrogen, and total phosphorus of BSCs, and significantly negatively correlated with sand content (P<0.05). The shrub community effectively improved the soil structure of BSCs in the sandy land of the Gonghe Basin. The Artemisia desertorum community was more conducive to soil refinement, and the Salix cheilophila community was more conducive to nutrient accumulation.

参考文献

[1] 李新荣, 谭会娟, 回嵘, 等. 中国荒漠与沙地生物土壤结皮研究[J]. 科学通报, 2018, 63(23): 2320-2334.
[1] [Li Xinrong, Tan Huijuan, Hui Rong, et al. Researches in biological soil crust of China: A review[J]. Chinese Science Bulletin, 2018, 63(23): 2320-2334.]
[2] 周虹, 吴波, 高莹, 等. 毛乌素沙地臭柏(Sabina vulgaris)群落生物土壤结皮细菌群落组成及其影响因素[J]. 中国沙漠, 2020, 40(5): 130-141.
[2] [Zhou Hong, Wu Bo, Gao Ying, et al. Composition and influencing factors of the biological soil crust bacterial communities in the Sabina vulgaris community in Mu Us Sandy Land[J]. Journal of Desert Research, 2020, 40(5): 130-141.]
[3] 姚宏佳, 王宝荣, 安韶山, 等. 黄土高原生物结皮形成过程中土壤胞外酶活性及其化学计量变化特征[J]. 干旱区研究, 2022, 39(2): 456-468.
[3] [Yao Hongjia, Wang Baorong, An Shaoshan, et al. Variation in soil extracellular enzyme activities stoichiometry during biological soil crust formation in the Loess Plateau[J]. Arid Zone Research, 2022, 39(2): 456-468.]
[4] 李新荣. 荒漠生物土壤结皮生态与水文学研究[M]. 北京: 高等教育出版社, 2012.
[4] [Li Xinrong. Study on Ecology and Hydrology of Desert Biological Soil Crusts[M]. Beijing: Higher Education Press, 2012.]
[5] Lan S, Wu L, Zhang D, et al. Successional stages of biological soil crusts and their microstructure variability in Shapotou region (China)[J]. Environmental Earth Sciences, 2012, 65(4): 77-88.
[6] 吴丽, 张高科, 陈晓国, 等. 生物结皮的发育演替与微生物生物量变化[J]. 环境科学, 2014, 35(4): 1479-1485.
[6] [Wu Li, Zhang Gaoke, Chen Xiaoguo, et al. Development and succession of biological soil crusts and the changes of microbial biomasses[J]. Environmental Science, 2014, 35(4): 1479-1485.]
[7] Rodríguez-caballero E, Castro A J, Chamizo S, et al. Ecosystem services provided by biocrusts: From ecosystem functions to social values[J]. Journal of Arid Environments, 2017, 159(12): 45-53.
[8] 谢婷, 李云飞, 李小军. 腾格里沙漠东南缘固沙植被区生物土壤结皮及下层土壤有机碳矿化特征[J]. 生态学报, 2021, 41(6): 2339-2348.
[8] [Xie Ting, Li Yunfei, Li Xiaojun. Organic carbon mineralization of biological soil crusts and subsoils in the revegetated areas of the southeast fringe of the Tengger Desert[J]. Acta Ecologica Sinica, 2021, 41(6): 2339-2348.]
[9] Xiao B, Sun F H, Hu K L, et al. Biocrusts reduce surface soil infiltrability and impede soil water infiltration under tension and ponding conditions in dryland ecosystem[J]. Journal of Hydrology, 2019, 568(8): 792-802.
[10] Zhang Z S, Chen Y L, Xu B X, et al. Topographic differentiations of biological soil crusts and hydraulic properties in fixed sand dunes, Tengger Desert[J]. Journal of Arid Land, 2015, 7(2): 205-215.
[11] 秦福雯, 康濒月, 姜凤岩, 等. 生物土壤结皮演替对高寒草原植被结构和土壤养分的影响[J]. 生态环境学报, 2019, 28(6): 1100-1107.
[11] [Qin Fuwen, Kang Binyue, Jiang Fengyan, et al. Effects of biological soil crust succession on vegetation structure and soil nutrients in alpine steppe[J]. Ecology and Environmental Sciences, 2019, 28(6): 1100-1107.]
[12] 闫德仁, 黄海广, 张胜男, 等. 沙漠苔藓生物结皮层养分及颗粒组成特征[J]. 干旱区资源与环境, 2018, 32(10): 111-116.
[12] [Yan Deren, Huang Haiguang, Zhang Shengnan, et al. Nutrients and particle composition characteristics in moss biological crusts[J]. Journal of Arid Land Resources and Environment, 2018, 32(10): 111-116.]
[13] Jiang Z Y, Li X Y, Wei J Q, et al. Contrasting surface soil hydrology regulated by biological and physical soil crusts for patchy grass in the high-altitude alpine steppe ecosystem[J]. Geoderma, 2018, 326(8): 201-209.
[14] 崔燕, 吕贻忠, 李保国. 鄂尔多斯沙地土壤生物结皮的理化性质[J]. 土壤, 2004, 36(2): 197-202.
[14] [Cui Yan, Lv Yizhong, Li Baoguo. Physico-chemical properties of soil microbiotic crusts on Erdos Plateau[J]. Soils, 2004, 36(2): 197-202.]
[15] 周小泉, 刘政鸿, 杨永胜, 等. 毛乌素沙地三种植被下苔藓结皮的土壤理化效应[J]. 水土保持研究, 2014, 21(6): 340-344.
[15] [Zhou Xiaoquan, Liu Zhenghong, Yang Yongsheng, et al. Effects of moss dominated crusts on soil physicochemical properties under three types of vegetation in Mu Us Sandland[J]. Research of Soil and Water Conservation, 2014, 21(6): 340-344.]
[16] 李晓英, 姚正毅, 董治宝. 青海省共和盆地沙漠化驱动机制[J]. 水土保持通报, 2018, 38(6): 337-344.
[16] [Li Xiaoying, Yao Zhengyi, Dong Zhibao. Driving mechanism of aeolian desertification in Gonghe Basin of Qinghai Province[J]. Bulletin of Soil and Water Conservation, 2018, 38(6): 337-344.]
[17] 辜晨, 贾晓红, 吴波, 等. 高寒沙区生物土壤结皮覆盖土壤碳通量对模拟降水的响应[J]. 生态学报, 2017, 37(13): 4423-4433.
[17] [Gu Chen, Jia Xiaohong, Wu Bo, et al. Effect of simulated precipitation on the carbon flux in biological-soil crusted soil in alpine sandy habitats[J]. Acta Ecologica Sinica, 2017, 37(13): 4423-4433.]
[18] 刘丽颖, 贾志清, 朱雅娟, 等. 高寒沙地不同林龄中间锦鸡儿的水分利用策略[J]. 干旱区资源与环境, 2012, 26(5): 119 -125.
[18] [Liu Liying, Jia Zhiqing, Zhu Yajuan, et al. Water use strategy of different stand ages of Caragana intermedia in alpine sandland[J]. Journal of Arid Land Resources and Environment, 2012, 26(5): 119 -125.]
[19] Zhang T, Jia R L, Yu L Y. Diversity and distribution of soil fungal communities associated with biological soil crusts in the southeastern Tengger Desert (China) as revealed by 454 pyrosequencing[J]. Fungal Ecology, 2016, 23(2): 156-163.
[20] 莫秋霞, 宋炜, 卜崇峰, 等. 油蒿与沙柳灌木地藓结皮发育差异研究[J]. 干旱区研究, 2023, 40(6): 979-987.
[20] [Mo Qiuxia, Song Wei, Bu Chongfeng, et al. Differences in moss crust development between Artemisia ordosica and Salix pasmmophia shrubs[J]. Arid Zone Research, 2023, 40(6): 979-987.]
[21] Kakeh J, Gorji M, Sohrabi M, et al. Effects of biological soil crusts on some physicochemical characteristics of rangeland soils of Alagol, Turkmen Sahra, NE Iran[J]. Soil & Tillage Research, 2018, 181(4): 152-159.
[22] 王蕊, 朱清科, 卜楠, 等. 黄土丘陵沟壑区生物土壤结皮理化性质[J]. 干旱区研究, 2010, 27(3): 401-408.
[22] [Wang Rui, Zhu Qingke, Bu Nan, et al. Study on physicochemical properties of biological soil crusts in the hilly-gully regions of the Loess Plateau[J]. Arid Zone Research, 2010, 27(3): 401-408.]
[23] 都军, 李宜轩, 杨晓霞, 等. 腾格里沙漠东南缘生物土壤结皮对土壤理化性质的影响[J]. 中国沙漠, 2018, 38(1): 111-116.
[23] [Du Jun, Li Yixuan, Yang Xiaoxia, et al. Effects of biological soil crusts types on soil physicochemical properties in the southeast fringe of the Tengger Desert[J]. Journal of Desert Research, 2018, 38(1): 111-116.]
[24] 郭志霞, 刘任涛, 冯永宏, 等. 不同降水对荒漠灌丛土壤理化性质和地表植被分布的影响[J]. 水土保持通报, 2021, 41(1): 56-65.
[24] [Guo Zhixia, Liu Rentao, Feng Yonghong, et al. Effects of different precipitation on soil properties and ground vegetation distribution in desert shrub microhabitats[J]. Bulletin of Soil and Water Conservation, 2021, 41(1): 56-65.]
[25] Zhang K H, Hu G L, Zhang Y J, et al. Distribution characteristics and influencing factors of soil water content in the root zone of Haloxylon ammodendron in desert-oasis ecotone in the middle reaches of the Heihe Rive[J]. Journal of Northwest Forestry University, 2019, 34(4): 16-25.
[26] Li X R, Zhang J G, Wang X P, et al. Study on soil microbiotic crust and its influences on sand-fixing vegetation in arid desert region[J]. Acta Botanica Sinica, 2000, 42(9): 965-970.
[27] 郭轶瑞, 赵哈林, 赵学勇, 等. 科尔沁沙地结皮发育对土壤理化性质影响的研究[J]. 水土保持学报, 2007, 21(1): 135-139.
[27] [Guo Yirui, Zhao Halin, Zhao Xueyong, et al. Study on crust development and its influences on soil physicochemical properties in Horqin Sand[J]. Journal of Soil and Water Conservation, 2007, 21(1): 135-139.]
[28] 邓丽媛, 胡广录, 周川, 等. 荒漠绿洲过渡带不同固沙植物根区土壤养分空间分布特征[J]. 西北林学院学报, 2022, 37(5): 17-23.
[28] [Deng Liyuan, Hu Guanglu, Zhou Chuan, et al. Spatial distribution characteristics of the soil nutrients in root zones with different sand fixing plants in the transition zone of desert Oasis[J]. Journal of Northwest Forestry University, 2022, 37(5): 17-23.]
[29] 刘艳梅, 李新荣, 何明珠, 等. 生物土壤结皮对土壤微生物量碳的影响[J]. 中国沙漠, 2012, 32(3): 669-673.
[29] [Liu Yanmei, Li Xinrong, He Mingzhu, et al. Effects of biological soil crusts on soil microbial biomass carbon[J]. Journal of Desert Research, 2012, 32(3): 669-673.]
[30] 张鹏, 李新荣, 张志山, 等. 腾格里沙漠东南缘生物土壤结皮的固氮潜力[J]. 应用生态学报, 2012, 23(8): 2157-2164.
[30] [Zhang Peng, Li Xinrong, Zhang Zhishan, et al. Nitrogen fixation potential of biological soil crusts in southeast edge of Tengger Desert, Northwest China[J]. Chinese Journal of Applied Ecology, 2012, 23(8): 2157-2164.]
[31] 周虹, 刘雲祥. 高寒沙区土壤结皮对浅层土壤理化性质的影响[J]. 干旱区资源与环境, 2022, 36(8): 154-160.
[31] [Zhou Hong, Liu Yunxiang. Effects of soil crusts on physicochemical properties of shallow soil in alpine sandy area[J]. Journal of Arid Land Resources and Environment, 2022, 36(8): 154-160.]
[32] 方海燕, 屈建军, 俎瑞平, 等. 防沙工程的结皮效应研究[J]. 水土保持学报, 2005, 19(2): 17-20.
[32] [Fang Haiyan, Qu Jianjun, Zu Ruiping, et al. Research on effect of sand prevention and control engineering on formation of physical crust[J]. Journal of Soil and Water Conservation, 2005, 19(2): 17-20.]
[33] 吴永胜, 哈斯, 李双权, 等. 毛乌素沙地南缘沙丘生物土壤结皮发育特征[J]. 水土保持学报, 2010, 24(5): 258-261.
[33] [Wu Yongsheng, Ha Si, Li Shuangquan, et al. Development characteristics of biological soil crusts on sand dune in southern Mu Us Sandyland[J]. Journal of Soil and Water Conservation, 2010, 24(5): 258-261.]
[34] 李尝君, 曾凡江, 郭京衡, 等. 植被恢复程度与沙地土壤性质——以塔克拉玛干沙漠南缘为例[J]. 干旱区研究, 2015, 32(6): 1061-1067.
[34] [Li Changjun, Zeng Fanjiang, Guo Jingheng, et al. Soil properties of different sandy lands under different vegetation recovering levels: A case in southern Taklimakan Desert[J]. Arid Zone Research, 2015, 32(6): 1061-1067.]
文章导航

/