水土资源

新疆博尔塔拉河中游地表水与地下水转化关系及原因

  • 高福翔 ,
  • 徐东升 ,
  • 周金龙 ,
  • 周龙
展开
  • 1.新疆农业大学水利与土木工程学院,新疆 乌鲁木齐 830052
    2.新疆水文水资源工程技术研究中心,新疆 乌鲁木齐 830052
    3.新疆水利工程安全与水灾害防治重点实验室,新疆 乌鲁木齐 830052
    4.中水北方勘测设计研究有限责任公司,天津 300222
高福翔(1996-),男,硕士研究生,主要研究方向为地下水流数值模拟. E-mail: 1084564084@qq.com

收稿日期: 2023-04-28

  修回日期: 2023-07-09

  网络出版日期: 2023-12-01

基金资助

中水北方勘测设计研究有限责任公司委托项目“新疆温泉地下水库水文地质条件分析及调蓄过程数值模拟专题研究”(ZSBF-WT202106)

Relationship and cause of surface water and groundwater transformation in the middle reaches of Bortala River, Xinjiang

  • Fuxiang GAO ,
  • Dongsheng XU ,
  • Jinlong ZHOU ,
  • Long ZHOU
Expand
  • 1. College of Hydraulic and Civil Engineering, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China
    2. Xinjiang Hydrology and Water Resources Engineering Research Center, Urumqi 830052, Xinjiang, China
    3. Xinjiang Key Laboratory of Hydraulic Engineering Safety and Water Disaster Prevention, Urumqi 830052, Xinjiang, China
    4. Zhongshui North Engineering Design & Research Co. Ltd., Tianjin 300222, China

Received date: 2023-04-28

  Revised date: 2023-07-09

  Online published: 2023-12-01

摘要

新疆博尔塔拉河流域水资源短缺且时空分配不均,定量计算出中游不同河段、不同时段地表水与地下水的转化量,对地下水开采与回补、地表水与地下水优化配置具有重要意义。基于2021年12月1日—2022年11月30日博尔塔拉河中游5个监测断面的逐日测流资料,运用河道径流分析法,结合P-III(Pearson-Ⅲ)型分布频率曲线、各监测断面来水量对比图和水文地质剖面图等对地表水与地下水转化进行了定量分析,并对渗漏河段入渗率与来水量关系进行了拟合。结果表明:(1) 5个监测断面中,博乐水文站年来水量最多,查乡大桥监测断面年来水量最少。(2) 博尔塔拉河中游2021年12月1日—2022年11月30日来水处于平水年份。(3) 博尔塔拉河中游上段,地下水转化补给地表水;中段昆得仑渠首-查乡大桥段地表水大量入渗补给地下水,入渗系数为0.67,入渗率与来水量呈显著负相关关系;下段,地下水再次溢出地表。博尔塔拉河中游河段共经历了3次地表水与地下水转化,总体表现为地下水溢出补给地表水。

本文引用格式

高福翔 , 徐东升 , 周金龙 , 周龙 . 新疆博尔塔拉河中游地表水与地下水转化关系及原因[J]. 干旱区研究, 2023 , 40(11) : 1754 -1764 . DOI: 10.13866/j.azr.2023.11.05

Abstract

The Bortala River Basin in Xinjiang is short of water resources and is unevenly distributed in time and space. It is important to quantitatively calculate the conversion rates of the surface water and groundwater in different reaches of the basin and as well as at different periods for the purposes of groundwater exploitation and replenishment and for the optimal allocation of water resources. Based on the daily flow measurement data from five monitored sections in the middle reaches of Bortala River from December 1, 2021, to November 30, 2022, Using river runoff analysis method, combined with the P-III distribution frequency curve, comparisons of water quantity between different monitoring sections, and hydrogeological cross-sections. The relationship between the infiltration rate and the runoff in the leaking river section was also fitted. The results showed that: (1) among the five monitoring stations, Bole Hydrology Station had the largest annual runoff, while Chaxiang Bridge had the smallest; (2) the runoff in the middle reaches of Bortala River was in a normal flow year year of 2022. (3) in the upper part of the middle reaches of the Bortala River, groundwater is converted to recharge surface water; The surface water in the section that runs from the Kundelun canal head to Chaxiang Bridge has a large amount of infiltration to recharge groundwater (infiltration coefficient: 0.67), and the infiltration rate was found to be significantly negatively correlated with the quantity of incoming water; In the lower part, groundwater spilled over the surface. The middle reaches of the Bortala River experienced three conversions of surface water and groundwater, with an overall performance of groundwater overflow supplementing surface water.

参考文献

[1] Wang H M, Jiao Y F, Hu B X. Study on Interaction between surface water and groundwater in typical reach of Xiaoqing River Based on WEP-L Model[J]. Water, 2023, 15(3): 492-507.
[2] 朱金峰, 刘悦忆, 章树安, 等. 地表水与地下水相互作用研究进展[J]. 中国环境科学, 2017, 37(8): 3002-3010.
[2] [Zhu Jinfeng, Liu Yueyi, Zhang Shu’an, et al. Review on the research of surface water and groundwater interactions[J]. China Environmental Science, 2017, 37(8): 3002-3010.]
[3] Hantush M M. Modeling stream-aquifer interactions with linear response functions[J]. Journal of Hydrology, 2005, 311(1): 59-79.
[4] 王文科, 杨泽元, 程东会, 等. 面向生态的干旱半干旱地区区域地下水资源评价的方法体系[J]. 吉林大学学报(地球科学版), 2011, 41(1): 159-167.
[4] [Wang Wenke, Yang Zeyuan, Cheng Donghui, et al. Methods of ecology-oriented groundwater resource assessment in arid and semi-arid area[J]. Journal of Jilin University (Earth Science Edition), 2011, 41(1): 159-167.]
[5] Harvey J W, Newlin J T, Krupa S L. Modeling decadal timescale interactions between surface water and ground water in the central Everglades, Florida, USA[J]. Journal of Hydrology, 2006, 320(3): 400-420.
[6] Kalbus E, Reinstorf F, Schirmer M. Measuring methods for groundwater-surface water interactions: A review[J]. Hydrology and Earth System Sciences, 2006, 10(6): 873-887.
[7] 王才川, 王文科, 张渊, 等. 河流—地下水水流模型研究进展[J]. 地下水, 2010, 32(6): 4-7.
[7] [Wang Caichuan, Wang Wenke, Zhang Yuan, et al. Development of the research on river-groundwater flow models[J]. Ground Water, 2010, 32(6): 4-7.]
[8] 党学亚, 张俊, 常亮, 等. 西北地区水文地质调查与水资源安全[J]. 西北地质, 2022, 55(3): 81-95.
[8] [Dang Xueya, Zhang Jun, Chang Liang, et al. Hydrogeological survey and water resources security in Northwest China[J]. Northwest Geology, 2022, 55(3): 81-95.]
[9] Wang Z T, Wang J P, Han J J. Spatial prediction of groundwater potential and driving factor analysis based on deep learning and geographical detector in an arid endorheic basin[J]. Ecological Indicators, 2022, 142(22): 1-14.
[10] Cao J, Kitanidis P K. Adaptive finite element simulation of Stokes flow in porous media[J]. Advances in Water Resources, 1998, 22(1): 17-31.
[11] 雷米, 周金龙, 张杰, 等. 新疆博尔塔拉河流域平原区地表水与地下水水化学特征及转化关系[J]. 环境科学, 2022, 43(4): 1873-1884.
[11] [Lei Mi, Zhou Jinlong, Zhang Jie, et al. Hydrochemical characteristics and transformation relationship of surface water and groundwater in the plain area of Bortala River Basin, Xinjiang[J]. Environmental Science, 2022, 43(4): 1873-1884.]
[12] 郝帅, 李发东, 李艳红, 等. 基于氢氧稳定同位素的艾比湖流域地表水与地下水转化关系[J]. 水土保持学报, 2021, 35(4): 172-177.
[12] [Hao Shuai, Li Fadong, Li Yanhong, et al. Transformation between surface water and groundwater in Ebinur Lake basin based on Hydrogen and Oxygen stable isotopes[J]. Journal of Soil and Water Conservation, 2021, 35(4): 172-177.]
[13] 秦国强. 温泉县城西地下水水源地可行性评价[J]. 地下水, 2020, 42(6): 35-36, 49.
[13] [Qin Guoqiang. Feasibility evaluation of west groundwater source in Wenquan County[J]. Ground Water, 2020, 42(6): 35-36, 49.]
[14] 丁启振, 雷米, 周金龙, 等. 博尔塔拉河上游河谷地区水化学特征及水质评价[J]. 干旱区研究, 2022, 39(3): 829-840.
[14] [Ding Qizhen, Lei Mi, Zhou Jinlong, et al. Hydrochemical characteristics and water quality assessment of groundwater and surface water in the upper valley of Bortala River[J]. Arid Zone Research, 2022, 39(3): 829-840.]
[15] 刘景明, 丁建丽, 包青岭, 等. 基于同位素揭示艾比湖流域地下水特征[J]. 干旱区地理, 2023, 46(2): 201-210.
[15] [Liu Jingming, Ding Jianli, Bao Qingling, et al. Characteristics of groundwater in Ebinur Lake Basin using isotopes method[J]. Arid Land Geography, 2023, 46(2): 201-210.]
[16] 玛尔胡拜·牙生. 新疆天山西部主要河流水化学特征沿程变化研究——以伊犁河和博尔塔拉河为例[D]. 乌鲁木齐: 新疆师范大学, 2020.
[16] [Marhubai Yasheng. Hydrochemical Characteristics of Major Rivers in the Western Tianshan Mountains, Xinjiang: Take Ili River and Bortala River as Examples[D]. Urumqi: Xinjiang Normal University, 2020.]
[17] 戴建民. 博尔塔拉河中游径流变化原因分析[J]. 水资源研究, 2010, 31(1): 16-17, 35.
[17] [Dai Jianmin. Cause analysis of runoff change in midstream of Boertala River[J]. Water Resources Research, 2010, 31(1): 16-17, 35.]
[18] 赵顺阳, 王文科, 乔冈, 等. 地质构造对生态环境的控制作用分析——以博尔塔拉河为例[J]. 新疆地质, 2006, 24(1): 67-70.
[18] [Zhao Shunyang, Wang Wenke, Qiao Gang, et al. Analysis the control of geotectonic on flow and eco-environment in Bortala River[J]. Xinjiang Geology, 2006, 24(1): 67-70.]
[19] 曾庆江. 博尔塔拉谷地对径流的调节作用[J]. 干旱区地理, 1994, 17(4): 9-14.
[19] [Zeng Qingjiang. Regulation of Bortala Valley on runoff[J]. Arid Land Geography, 1994, 17(4): 9-14.]
[20] Dev Vikrant A, Eden Mario R. Formation lithology classification using scalable gradient boosted decision trees[J]. Computers and Chemical Engineering, 2019, 128(43): 392-404.
[21] Vereecken H, D?ring U, Hardelauf H, et al. Analysis of solute transport in a heterogeneous aquifer: The Krauthausen field experiment[J]. Journal of Contaminant Hydrology, 2000, 45(3): 329-358.
[22] 杨海娇, 魏加华, 任倩慧. 柴达木盆地典型流域地表水—地下水转化关系及水化学特征[J]. 干旱区研究, 2022, 39(5): 1543-1554.
[22] [Yang Haijiao, Wei Jiahua, Ren Qianhui. Interaction between surface water and groundwater and hydrochemical characteristics in the typical watersheds of the Qaidam Basin[J]. Arid Zone Research, 2022, 39(5): 1543-1554.]
[23] 张浪, 贺中华, 夏传花, 等. 基于河流出水量的区域水文干旱特征及其水文频率分析——以黔中水利枢纽工程区为例[J]. 科学技术与工程, 2021, 21(27): 11480-11489.
[23] [Zhang Lang, He Zhonghua, Xia Chuanhua, et al. Analysis of regional hydrological drought characteristics and hydrological frequency based on river water output: Taking Qianzhong water conservancy project area as an example[J]. Science Technology and Engineering, 2021, 21(27): 11480-11489.]
[24] 雷冠军, 王文川, 殷峻暹, 等. P-Ⅲ型曲线参数估计方法研究综述[J]. 人民黄河, 2017, 39(10): 1-7.
[24] [Lei Guanjun, Wang Wenchuan, Yin Junxian, et al. Review on study of parameter estimation methods on P-III curve[J]. Yellow River, 2017, 39(10): 1-7.]
[25] 雷冠军. P-Ⅲ型曲线参数优选及其不确定性研究[D]. 郑州: 华北水利水电大学, 2016.
[25] [Lei Guanjun. Research on the Optimization and Uncertainty of P-Ⅲ Type Curve Parameter[D]. Zhengzhou: North China University of Water Resources and Electric Power, 2016.]
[26] 李丽君, 张小清, 陈长清, 等. 近20 a塔里木河下游输水对生态环境的影响[J]. 干旱区地理, 2018, 41(2): 238-247.
[26] [Li Lijun, Zhang Xiaoqing, Chen Changqing, et al. Ecological effects of water conveyance on the lower reaches of Tarim River in recent twenty years[J]. Arid Land Geography, 2018, 41(2): 238-247.]
[27] 阿孜古丽·卡哈尔, 阿不力克木·阿不力孜. 新疆水面蒸发量折算系数及时空分布分析[C]// 中国水利学会2003学术年会论文集. 北京: 中国三峡出版社, 2003: 24-28.
[27] [Aziguri Kahar, Abrikmu Abrizi. Analysis of the conversion coefficient of water surface evaporation in Xinjiang[C]// Papers of 2003 Academic Annual Meeting of China Water Conservancy Society. Beijing: China Three Gorges Press, 2003: 24-28.]
[28] 乔治华. 新疆博尔塔拉河流域水文特征分析[J]. 地下水, 2019, 41(3): 160-161.
[28] [Qiao Zhihua. Hydrological characteristics of the Bortala River Basin in Xinjiang[J]. Ground Water, 2019, 41(3): 160-161.]
[29] 董新光, 郭西万. 新疆博尔塔拉河干流段地表水地下水转化关系的系统分析法[J]. 干旱区地理, 1996, 19(4): 45-50.
[29] [Dong Xinguang, Guo Xiwan. Systematic analysis method of transformational relationship between surface water and groundwater along main stream of the Bortala River in Xinjiang[J]. Arid Land Geography, 1996, 19(4): 45-50.]
[30] 董新光, 郭西万, 邓铭江, 等. 新疆准噶尔盆地典型流域水资源系统优化配置研究[M]. 乌鲁木齐: 新疆科技卫生出版社, 1997.
[30] [Dong Xinguang, Guo Xiwan, Deng Mingjiang, et al. Study on the Optimal Allocation of Water Resources System in Typical Basins of Junggar Basin in Xinjiang[M]. Urumqi: Xinjiang Science and Technology Health Publishing House, 1997.]
[31] 王月健. 干旱区湖泊流域水资源变化及其对生态安全的影响研究[D]. 乌鲁木齐: 新疆大学, 2018.
[31] [Wang Yuejian. Study on the Influence of the Change of Water Resources and its Impact on Ecological Security in the Arid: An Example of Ebinur Lake Basin in Xinjiang[D]. Urumqi: Xinjiang University, 2018.]
[32] 陈志军, 张晶, 卡米拉, 等. 博尔塔拉河流域水文特性[J]. 水资源研究, 2007, 28(1): 25-28.
[32] [Chen Zhijun, Zhang Jing, Camilla, et al. Hydrological characteristics of Bortala River Basin[J]. Water Resources Research, 2007, 28(1): 25-28.]
文章导航

/