天气与气候

基于空-地协同调查的西天山阿尔先沟雪崩过程数值模拟

  • 张天意 ,
  • 刘杰 ,
  • 杨治纬 ,
  • 王斌 ,
  • 程秋连
展开
  • 1.新疆农业大学交通与物流工程学院,新疆 乌鲁木齐 830052
    2.新疆交通规划勘察设计研究院有限公司科技研发中心,新疆 乌鲁木齐 830006
张天意(1997-),男,硕士研究生,主要从事公路冰雪灾害防治. E-mail: zhangtianyiKevin@outlook.com

收稿日期: 2023-05-19

  修回日期: 2023-07-11

  网络出版日期: 2023-12-01

基金资助

交通运输行业重点科技项目(2022-ZD6-090);新疆交通运输科技项目(2022-ZD-006);新疆交投集团2021年度“揭榜挂帅”科技项目(ZKXFWCG2022060004);新疆交通设计院科技研发项目(KY2022021501)

Numerical simulation of avalanche process in Aerxiangou, West Tianshan Mountains, based on air-ground cooperative investigation

  • Tianyi ZHANG ,
  • Jie LIU ,
  • Zhiwei YANG ,
  • Bin WANG ,
  • Qiulian CHENG
Expand
  • 1. School of Transportation and Logistics Engineering, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China
    2. Xinjiang Transportation Planning, Survey and Design Institute Co., Ltd., Technology Research and Development Center, Urumqi 830006, Xinjiang, China

Received date: 2023-05-19

  Revised date: 2023-07-11

  Online published: 2023-12-01

摘要

为精确识别雪崩流动特性及流态信息,全面分析其运动过程。本研究基于无人机倾斜摄影技术获取高分辨率航拍数据,以阿尔先沟雪崩易发区为例,通过现场调查、无人机遥感解译精细探测雪崩活动过程,确定RAMMS模型输入参数,在此基础上对不同类型雪崩事件进行模拟和重建,对比分析传统地面调查、无人机遥感解译结果与模拟结果的差异,探讨不同类型、不同雪层释放条件下雪崩活动过程。研究结果表明:(1) 以倾斜摄影技术为核心的雪崩调查分析体系,将传统的地面调查方法结合无人机遥感和数值模拟相互验证,提高了灾害发育状况评估的准确性。(2) 2月中旬阿尔先沟坡面积雪厚度趋近于临界厚度值,持续降雪使雪层失稳触发新雪雪崩。调查时仍处于灾害孕育阶段,雪层裂缝加剧变形,风力作用下雪檐自重逐步增大,有超过雪的抗断强度的趋势,整体稳定性较差。(3)以坡面上方积雪平台为潜在释放区的坡面型雪崩,释放量可达8.2669×104 m3,运动时长约为128 s,并在120 s内堆积区流动高度达到最大,约为3.55 m,最大流动速度为18.34 m·s-1,最大冲击力可达到32.67 kPa,形成面积3369.7 m2,体积1.8525×104 m3的堆积体。通过相互验证,坡面型雪崩并非积雪平台的释放,地面调查结果与数值模拟解译结果存在差异。(4) 沟槽—坡面复合型雪崩为沟槽坡面雪层断裂释放且断裂深度仅为临界厚度值的60%左右,雪崩持续时间接近于300 s,堆积区最大流动速度6.58 m·s-1,最大冲击力17.97 kPa,平均堆积深度为1.64 m,影响范围1178.5 m2,堆积量3107.76 m3,地面调查结果与数值模拟结果一致。研究结果一定程度上提高了雪崩事件信息获取的准确性,可为今后雪崩潜在危险预测、风险规避及灾害应急处置提供强有力的数据支撑及科学依据。

本文引用格式

张天意 , 刘杰 , 杨治纬 , 王斌 , 程秋连 . 基于空-地协同调查的西天山阿尔先沟雪崩过程数值模拟[J]. 干旱区研究, 2023 , 40(11) : 1729 -1743 . DOI: 10.13866/j.azr.2023.11.03

Abstract

This study was implemented to accurately identify the avalanche flow characteristics and flow information, and comprehensively analyze avalanche motion. This study was based on UAV tilt photography technology to obtain high-resolution aerial photography data, taking the avalanche-prone area of Aerxiangou as an example. Through on-site investigation and UAV remote sensing interpretation to detect avalanche activity in a high-resolution manner, the goals were to determine the input parameters of the RAMMS model, to simulate and reconstruct different types of avalanche events on this basis, and to comparatively analyze the differences among the results of conventional ground-based investigation, UAV remote sensing interpretation, and simulation results to explore avalanche activity in different types and different snow layer release conditions. The results of the study show that (1) the avalanche investigation and analysis system based around tilt photography technology, which combines conventional ground-based investigation methods with UAV remote sensing and numerical simulation to verify each other, improves the accuracy of the assessment of disaster development status. (2) In mid-February, the snow on the slopes of Aerxiangou approaches the critical thickness value, and continuous snowfall destabilizes the snow layer and triggers new avalanches. The investigation is still in the disaster breeding stage, the snow layer cracks intensified deformation, the role of the wind snow eave self-weight gradually increased, there is more than the trend of the breaking strength of the snow, and the overall stability is poor. (3) In slope-type avalanches with a snow platform above the slope surface as the potential release area, the release volume can reach 8.2669×104 m3, the movement duration is about 128 s, and the flow height of the accumulation area peaks in 120 s at about 3.55 m, the flow velocity is about 18.34 m·s-1, and the impact force is about 32.67 kPa. In addition, the accumulation area is formed into an accumulation with an area of 3369.7 m2 and a volume of 1.8525×104 m3 of the pile. Through mutual verification, the slope-type avalanche does not involve release of the snow platform, and there is a discrepancy between the ground-based investigation results and numerical simulation interpretation results. (4) Trench-slope composite avalanches are released by fracture of the snow layer on the trench-slope, where the depth of fracture is only about 60% of the critical thickness value, the avalanche duration is close to 300 s in this case, and the impact range is 1178.5 m2 in the accumulation area, with an average accumulation depth of 1.64 m. The flushing-out volume is 3107.76 m3, the maximum flow rate in the accumulation area is 6.58 m·s-1, and the maximum impact force is 17.97 kPa. The results of the ground-based investigation are roughly the same as those of the numerical simulation based on the 3D model. The results of the study have improved the accuracy with which avalanche event information can be acquired and can provide strong data support and a scientific basis for predicting future avalanche potential hazards, risk avoidance, and disaster emergency response.

参考文献

[1] 王世金, 任贾文. 国内外雪崩灾害研究综述[J]. 地理科学进展, 2012, 31(11): 1529-1536.
[1] [Wang Shijin, Ren Jiawen. A review of the progresses of avalanche hazards research[J]. Progress in Geography, 2012, 31(11): 1529-1536.]
[2] Katja Laute, Achim A. Beylich. Morphometric and meteorological controls on recent snow avalanche distribution and activity at hillslopes in steep mountain valleys in western Norway[J]. Geomorphology, 2013, 218: 16-34.
[3] 文谨, 陈思齐. 青藏高原及其周边地区的雪崩灾害及应对策略研究[J]. 今日科苑, 2021, 25(7): 83-89.
[3] [Wen Jin, Chen Siqi. Research on the snow avalanche disasters over the Qinghai-Tibet Plateau and its surrounding areas and corresponding coping strategies[J]. Modern Science, 2021, 25(7): 83-89.]
[4] 杨金明, 张旭, 毛炜峄, 等. 中国天山雪崩灾害调查分析[J]. 自然灾害学报, 2022, 31(1): 188-197.
[4] [Yang Jinming, Zhang Xu, Mao Weiyi, et al. Investigation and analysis of snow avalanche disaster in Tianshan Mountains of China[J]. Journal of Natural Disasters, 2022, 31(1): 188-197.]
[5] Liu Yang, Chen Xi, Qiu Yubao, et al. Mapping snow avalanche debris by object-based classification in mountainous regions from Sentinel-1 images and causative indices[J]. Catena, 2021, 206: 105559.
[6] 郝建盛, 李兰海. 雪崩灾害防治研究进展及展望[J]. 冰川冻土, 2022, 44(3): 762-770.
[6] [Hao Jiansheng, Li Lanhai. Progress and prospect of avalanche disaster prevention and control research[J]. Journal of Glaciology and Geocryology, 2022, 44(3): 762-770.]
[7] 李德仁, 李明. 无人机遥感系统的研究进展与应用前景[J]. 武汉大学学报(信息科学版), 2014, 39(5): 505-513, 540.
[7] [Li Deren, Li Ming. Research advance and application prospect of Unmanned Aerial Vehicle remote sensing system[J]. Geomatics and Information Science of Wuhan University, 2014, 39(5): 505-513, 540.]
[8] 胡可, 陈思思, 王俊伟. 无人机载红外载荷在应急测绘中的应用[J]. 测绘科学, 2015, 40(10): 60-64.
[8] [Hu Ke, Chen Sisi, Wang Junwei. The application of infrared UAV playload in emergency mapping support[J]. Science of Surveying and Mapping, 2015, 40(10): 60-64.]
[9] 鲁恒, 李永树, 李何超, 等. 无人机影像数字处理及在地震灾区重建中的应用[J]. 西南交通大学学报, 2010, 45(4): 533-538, 573.
[9] [Lu Heng, Li Yongshu, Li Hechao, et al. Digital processing of unmanned aerial vehicle images and its application in reconstruction of Wenchuan earthquake-stricken areas[J]. Journal of Southwest Jiaotong University, 2010, 45(4): 533-538, 573.]
[10] 赵星涛, 胡奎, 卢晓攀, 等. 无人机低空航摄的矿山地质灾害精细探测方法[J]. 测绘科学, 2014, 39(6): 49-52, 64.
[10] [Zhao Xingtao, Hu Kui, Lu Xiaopan, et al. Precise detection method for mine geological disasters using low-altitude photogrammetry based on unmanned aerial vehicle[J]. Science of Surveying and Mapping, 2014, 39(6): 49-52, 64.]
[11] 彭大雷, 许强, 董秀军, 等. 无人机低空摄影测量在黄土滑坡调查评估中的应用[J]. 地球科学进展, 2017, 32(3): 319-330.
[11] [Peng Dalei, Xu Qiang, Dong Xiujun, et al. Application of unmanned aerial vehicles low-altitude photogrammetry in investigation and evaluation of loess landslide[J]. Advances in Earth Science, 2017, 32(3): 319-330.]
[12] Eirik Malnes, Markus Eckerstorfer, Yngvar Larsen, et al. Remote Sensing of Avalanches in Northern Norway Using Synthetic Aperture Radar[C]. International Snow Science Workshop Grenoble, 2013.
[13] Yang Jinming, He Qing, Liu Yang. Winter-spring prediction of snow avalanche susceptibility using optimisation multi-source heterogeneous factors in the Western Tianshan Mountains, China[J]. Remote Sensing, 2022, 14(6):1340.
[14] Markus Eckerstorfer, Stian Solbo, Eirik Malnes. Using “Structure-from-Motion” photogrammetry in mapping snow avalanche debris[J]. Vienna, 2015, 21: 171-178.
[15] Gao Hongkai, He Xiaobo, Ye Baisheng, et al. Modeling the runoff and glacier mass balance in a small watershed on the Central Tibetan Plateau, China, from 1955 to 2008[J]. Hydrological Processes, 2012, 26(11): 1593-1603.
[16] Voellmy A. über die Zerst?rungskraft von Lawinen[J]. Sch-weizerische Bauzeitung, 1964, 73: 159-165.
[17] Salm B, Burkhard A, Gubler H U. Berechnung von Fliess-lawinen: Eine anleitung fuer Praktiker; mit Beispielen[J]. Mitteilungen des Eidgenoessischen Instituts fuer Schnee-und Lawinenforschung, 1990, 47: 1-37.
[18] 杨明军, 康冰锋, 韩丹. 基于LiDAR和倾斜摄影测量技术的实景三维自动化建模方法[J]. 科技资讯, 2018, 16(33): 93-96.
[18] [Yang Mingjun, Kang Bingfeng, Han Dan. Automated modeling method for real-world 3D based on LiDAR and inclined photogrammetry[J]. Science and Technology Information, 2018, 16(33): 93-96.]
[19] 管建军, 王俊豪, 王双亭, 等. 无人机倾斜摄影在黄土地区泥石流灾害调查与评价中的应用[J]. 中国地质灾害与防治学报, 2017, 28(4): 137-145.
[19] [Guan Jianjun, Wang Junhao, Wang Shuangting, et al. Application of UAV oblique photography in investigation and evaluation of debris flow disasters in loess area[J]. The Chinese Journal of Geological Hazards and Control, 2017, 28(4): 137-145.]
[20] 闫烨琛, 高学飞, 于向吉, 等. 无人机倾斜摄影测量技术在地质灾害隐患调查中的应用研究[J]. 科技创新与应用, 2022, 12(17): 193-196.
[20] [Yan Yechen, Gao Xuefei, Yu Xiangji, et al. Research on the application of UAV inclined photogrammetry technology in the investigation of geologic hazards[J]. Technology Innovation and Application, 2022, 12(17): 193-196.]
[21] 王靖文, 唐志光, 邓刚, 等. 1991—2021年天山融雪末期雪线高度遥感监测研究[J]. 干旱区研究, 2022, 39(5): 1385-1397.
[21] [Wang Jinwen, Tang Zhiguang, Deng Gang, et al. Monitoring of snowline altitude at the end of melting season in Tianshan Mountains from 1991 to 2021[J]. Arid Zone Research, 2022, 39(5): 1385-1397.]
[22] 苗运玲, 于永波, 霍达, 等. 中天山北坡冬季降雪变化及其影响因子分析[J]. 干旱区研究, 2023, 40(1): 9-18.
[22] [Miao Yunling, Yu Yongbo, Huo Da, et al. Analysis of winter snowfall variability and its influencing factors on thenorth slopes of the middle Tianshan Mountains[J]. Arid Zone Research, 2023, 40(1): 9-18.]
[23] 汶林科, 向灵芝, 蔡毅, 等. 雪崩的形成机理研究[J]. 山地学报, 2016, 34(1): 1-11.
[23] [Wen Linke, Xiang Lingzhi, Cai Yi, et al. Research on the formation mechanism of avalanche[J]. Mountain Research, 2016, 34(1): 1-11.]
[24] Schweizer J, Jamieson J B. Snow cover properties for skier triggering of avalanches[J]. Cold Regions Science and Technology, 2001, 33(2-3): 207-221.
[25] 王彦龙. 我国的干雪雪崩[J]. 冰川冻土, 1986, 8(4): 381-387.
[25] [Wang Yanlong. Dry-snow avalanches in China[J]. Journal of Glaciology and Geocryology, 1986, 8(4): 381-387.]
[26] 郭玲鹏, 李兰海, 徐俊荣, 等. 气温变化条件下融雪速率和土壤水分变化的同步观测试验[J]. 干旱区研究, 2012, 29(5): 890-897.
[26] [Guo Lingpeng, Li Lanhai, Xu Junrong, et al. Experimental study on simultaneous observation of snowmelt and soil moisture content under air temperature increase[J]. Arid Zone Research, 2012, 29(5): 890-897.]
[27] Ahmet ?asi, Murat Yakar. Photogrammetry modelling of sekihan masjid using an unmanned aerial vehicle[J]. Turkish Journal of Engineering, 2017, 1(2): 39-44.
[28] 何敬, 李永树, 鲁恒, 等. 无人机影像的质量评定及几何处理研究[J]. 测绘通报, 2010, 56(4): 22-24, 35.
[28] [He Jing, Li Yongshu, Lu Heng, et al. Research of UAV image quality evaluation and geometry processing[J]. Bulletin of Surveying and Mapping, 2010, 56(4): 22-24, 35.]
[29] Cao Duanguang, Zhang Baolei, Zhang Xiaobo, et al. Optimization methods on dynamic monitoring of mineral reserves for open pit mine based on UAV oblique photogrammetry[J]. Measurement, 2023, 207: 112364.
[30] 桂德竹, 林宗坚, 张成成. 倾斜航空影像的城市建筑物三维模型构建研究[J]. 测绘科学, 2012, 37(4): 140-142.
[30] [Gui Dezhu, Lin Zongjian, Zhang Chengcheng. Research on construction of 3D building based on oblique images from UAV[J]. Science of Surveying and Mapping, 2012, 37(4): 140-142.]
[31] Marco Martini, Tommaso Baggio, Vincenzo D'Agostino. Comparison of two 2-D numerical models for snow avalanche simulation[J]. Science of the Total Environment, 2023, 896: 165221.
[32] Christen M, Kowalski J, Bartelt P. RAMMS: Numerical simulation of dense snow avalanches in three-dimensional terrain[J]. Cold Regions Science & Technology, 2010, 63(1-2): 1-14.
[33] 胡汝骥, 马维林, 王存牛. 中国天山的雪崩及其治理[J]. 冰川冻土, 1987, 9(S1): 13-24, 150.
[33] [Hu Ruji, Ma Weilin, Wang Cunniu. Avalanches in Tianshan Mountains, China, and their control[J]. Journal of Glaciology and Geocryology, 1987, 9(S1): 13-24, 150.]
[34] 胡汝骥, 迟国彬, 马维林, 等. 天山西部雪崩防治的研究[J]. 干旱区地理, 1981, 5(1): 39-46.
[34] [Hu Ruji, Chi Guobin, Ma Weilin, et al. Research on avalanche control in the western Tianshan Mountains[J]. Arid Land Geography, 1981, 5(1): 39-46.]
[35] 胡汝骥, 马维林, 魏文寿, 等. 我国天山降雪与季节性雪崩的基本物理特征[J]. 干旱区地理, 1985, 8(1): 57-61.
[35] [Hu Ruji, Ma Weilin, Wei Wenshou, et al. Basic physical characteristics of snowfall and seasonal avalanches in the Tianshan Mountains of China[J]. Arid Land Geography, 1985, 8(1): 57-61.]
[36] 邱隆君. 基于数字高程模型的重力中区地形改正[J]. 地质论评, 2023, 69(S1): 395-396.
[36] [Qiu Longjun. Gravity exploration medium-zone terrain correction based on digital elevation model[J]. Geological Review, 2023, 69(S1): 395-396.]
[37] 张宏鸣, 樊世豪, 陈茹雪, 等. 基于数字高程模型的淤地坝地区河网提取方法[J]. 农业机械学报 2023, 54(9): 246-253, 269.
[37] [Zhang Hongming, Fan Shihao, Chen Ruxue, et al. Research on channel network extraction method in check dam area based on DEM[J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(9): 246-253, 269.]
[38] Christen Marc, Bartelt Perry, Kowalski Julia. Back calculation of the in den Arelen avalanche with RAMMS: Interpretation of model results[J]. Annals of Glaciology, 2010, 51(54): 161-168.
[39] Buhler Y, Christen M, Kowalski J, et al. Sensitivity of snow avalanche simulations to digital elevation model quality and resolution[J]. Annals of Glaciology, 2011, 52(58): 72-80.
[40] Jamieson Bruce, Johnston Colin D. Snowpack factors associated with strength changes of buried surface hoar layers[J]. Cold Regions Science and Technology, 1999, 30(1-3): 19-34.
[41] 王建, 车涛, 李震, 等. 中国积雪特性及分布调查[J]. 地球科学进展, 2018, 33(1): 12-26.
[41] [Wang Jian, Che Tao, Li Zhen, et al. Investigation on snow characteristics and their distribution in China[J]. Advances in Earth Science, 2018, 33(1): 12-26.]
[42] 张志忠. 天山巩乃斯河谷公路雪崩防治研究的初步结果[J]. 冰川冻土, 1981, 3(4): 65-71, 120.
[42] [Zhang Zhizhong. Preliminary results of avalanche prevention and control studies on highways in Kunes Valley, Tianshan Mountains[J]. Journal of Glaciology and Geocryology, 1981, 3(4): 65-71, 120.]
文章导航

/