生态与环境

乌珠穆沁沙地主要风沙环境特征及形成机制研究

  • 张昊 ,
  • 党晓宏 ,
  • 蒙仲举 ,
  • 高永 ,
  • 刘阳 ,
  • 秦青船
展开
  • 1.内蒙古农业大学沙漠治理学院,内蒙古 呼和浩特 010018
    2.内蒙古杭锦荒漠生态系统国家定位观测研究站,内蒙古 鄂尔多斯 017400
    3.包头市林业和草原局,内蒙古 包头 014030
    4.中央与地方共建高校特色优势学科“风沙物理”重点实验室,内蒙古 呼和浩特 010018
    5.内蒙古自治区水利科学研究院,内蒙古 呼和浩特 010020
    6.东乌珠穆沁旗水利事业发展中心,内蒙古 锡林浩特 026300
张昊(1999-),男,硕士研究生,研究方向为荒漠化防治监测. E-mail: 1098228823@qq.com

收稿日期: 2023-05-11

  修回日期: 2023-08-07

  网络出版日期: 2023-11-01

基金资助

内蒙古自治区科技计划“乌珠穆沁沙地生态脆弱区植被恢复与重建技术研究”(2020GG0077)

Study on main aeolian sand environment characteristics and formation mechanism in Wuzhumuqin Sandy Land

  • Hao ZHANG ,
  • Xiaohong DANG ,
  • Zhongju MENG ,
  • Yong GAO ,
  • Yang LIU ,
  • Qingchuan QIN
Expand
  • 1. School of Desert Management, Inner Mongolia Agricultural University, Hohhot 010018, Inner Mongolia, China
    2. National Positioning and Observation Research Station of Hangjin Desert Ecosystem, Ordos 017400, Inner Mongolia, China
    3. Baotou Forestry and Grassland Bureau, Baotou 014030, Inner Mongolia, China
    4. Key Laboratory of “Sandstorm Physics”, A Characteristic and Advantageous Discipline Jointly Built by the Central and Local Governments, Hohhot 010018, Inner Mongolia, China
    5. Research Institute of Water Resources of Inner Mongolia Autonomous Region, Hohhot 010020, Inner Mongolia, China
    6. Dongwuzhumuqin Banner Water Conservancy Development Center, Xilinhot 026300, Inner Mongolia, China

Received date: 2023-05-11

  Revised date: 2023-08-07

  Online published: 2023-11-01

摘要

厘清区域风沙运动环境和沉积物粒度特征是研究风沙流的关键,对地区风沙灾害的防护与治理具有重要意义。本文利用乌珠穆沁沙地的风况数据,研究沙地起沙风况和输沙势变化特征,同时结合沉积物粒径数据,揭示该地区风沙环境的空间分异规律。结果表明:(1)乌珠穆沁沙地年均起沙风频率为33.8%,平均风速介于3.34~5.40 m·s-1之间,平均起沙风速介于6.46~8.49 m·s-1之间,沙地起沙风频率和风速北部大于南部,西部大于东部。(2)沙地整体年内起沙风频率和风速春季最高,起沙风向以西南方向为主,WSW风向频率最高。(3)沙地输沙势为19.2~193.7 VU,整体属低风能环境,风况多为锐双峰风况,沙地输沙势北部大于南部,西部大于东部。全年沙物质整体向东、东北方向输移,春季是最主要的风沙活动期。(4)沙地整体以粗沙和中沙组分为主,南部和西部土壤粒径偏粗,东部偏细。沙地北部和东部沉积物分选性较差,粒径组分受外来影响较大。总体而言,沙地北部风沙活动最强,适宜人工建植或铺设沙障固沙。沙地东部栽植防护林,避免沙物质持续东移。

本文引用格式

张昊 , 党晓宏 , 蒙仲举 , 高永 , 刘阳 , 秦青船 . 乌珠穆沁沙地主要风沙环境特征及形成机制研究[J]. 干旱区研究, 2023 , 40(10) : 1687 -1697 . DOI: 10.13866/j.azr.2023.10.15

Abstract

Mastering the regional wind sand movement environment and sediment particle size characteristics is the key to studying wind sand flow, and is of great significance for the prevention and recovery of regional wind sand disasters. Based on the wind regime data of Wuzhumuqin Sandy Land, this paper studies the variation characteristics of sand driving wind regime and sand transport potential, and reveals the spatial differences of sand environment in this area by combining with the sediment particle size data. The results show that:(1)The annual average frequency of sand blowing in the Wuzhumuqin sandy land is 33.8%, with an average wind speed of 3.34-5.40 m·s-1, and an average sand blowing wind speed of 6.46-8.49 m·s-1. The frequency and wind speed of sand blowing in the north of the sandy land are greater than those in the south, and those in the west are greater than those in the east. (2)The overall annual frequency and wind speed of sand storms are the highest in spring. The wind direction of sand storms is mainly in the southwest direction, and the frequency in the WSW direction is the highest.(3)The sand transport potential in the sandy land is 19.2-193.7 VU, which is generally a low wind energy environment. The wind conditions are mostly sharp bimodal wind conditions. The sand transport potential in the north of the sandy land is greater than that in the south, and that in the west is greater than that in the east. Throughout the year, sand material is transported to the east and northeast, and spring is the most important period of wind sand activity.(4)The sandy land is mainly composed of coarse and medium sand components, with soil particle sizes in the south and west being coarser and finer in the east. The sorting of sediment in the northern and eastern parts of the sandy land is poor, and the particle size components are greatly influenced by external factors. Overall, the sandstorm activity in the northern part of the sandy land is the strongest, making it suitable for artificial planting or laying sand barriers to fix sand. Protection forest is planted in the east of the sandy land to avoid the continuous eastward movement of sand.

参考文献

[1] 刘洪涛. 长途迁徙的环境杀手——沙尘暴[J]. 地球, 2004(3): 9-10.
[1] [Liu Hongtao. Environmental killer of long distance migration- sandstorm[J]. Earth, 2004(3): 9-10.]
[2] 陈宗颜, 董治宝, 汪青春, 等. 柴达木盆地风况及输沙势特征[J]. 中国沙漠, 2020, 40(1): 195-203.
[2] [Chen Zongyan, Dong Zhibao, Wang Qingchun, et al. Characteristics of wind regime and sand drift potential in Qaidam Basin of China[J]. Journal of Desert Research, 2020, 40(1): 195-203.]
[3] 梁晓磊, 牛清河, 安志山, 等. 甘肃瓜州锁阳城南雅丹地貌区起沙风况与输沙势特征[J]. 中国沙漠, 2019, 39(3): 48-55.
[3] [Liang Xiaolei, Niu Qinghe, An Zhishan, et al. Sand-driving wind regime and sand drift potential in the Yardang landform areas of Southern Suoyang Town, Guazhou, Gansu, China[J]. Journal of Desert Research, 2019, 39(3): 48-55.]
[4] 张克存, 牛清河, 屈建军, 等. 敦煌鸣沙山月牙泉景区风沙环境分析[J]. 中国沙漠, 2012, 32(4): 896-900.
[4] [Zhang Kecun, Niu Qinghe, Qu Jianjun, et al. Analysis of wind-blown sand environment in the singing sand mountain & crescent moon spring scenic spot in Dunhuang, China[J]. Journal of Desert Research, 2012, 32(4): 896-900.]
[5] 房彦杰. 基于Fryberger方法的塔克拉玛干沙漠输沙势时空分布特征分析[D]. 成都: 四川师范大学, 2015.
[5] [Fang Yanjie. Spatial and Temporal Distribution Characteristics of Sand Drift Potential in Taklimakan Desert Based on the ‘Fryberger’Method[D]. Chengdu: Sichuan Normal University, 2015.]
[6] 李志星, 李志忠, 靳建辉, 等. 2008—2018年河北昌黎海岸输沙势时空变化与沙丘形态演变[J]. 中国沙漠, 2020, 40(3): 94-105.
[6] [Li Zhixing, Li Zhizhong, Jin Jianhui, et al. Spatial-temporal variation of drift potential and dune morphology evolution during 2008-2018 in Changli coast of Hebei, China[J]. Journal of Desert Research, 2020, 40(3): 94-105.]
[7] 张克存, 安志山, 何明珠, 等. 乌海至玛沁高速公路中卫段风沙环境特征及沙害防治[J]. 干旱区地理, 2021, 44(4): 983-991.
[7] [Zhang Kecun, An Zhishan, He Mingzhu, et al. Aeolian sand environments and disaster prevention along Zhongwei section of the Wuhai-Maqin Highway[J]. Arid Land Geography, 2021, 44(4): 983-991.]
[8] 王金国, 安志山, 张克存, 等. 乌玛高速公路中卫段风沙环境及输移规律[J]. 水土保持研究, 2021, 28(6): 183-189.
[8] [Wang Jinguo, An Zhishan, Zhang Kecun, et al. Surface sand grain characteristics along Zhongwei Section of Wuhai-Maqin Highway[J]. Research of Soil and Water Conservation, 2021, 28(6): 183-189.]
[9] 朱泊年, 党晓宏, 蒙仲举, 等. 乌珠穆沁沙地生物基可降解聚乳酸(PLA)沙障防风固沙效益[J]. 水土保持研究, 2023, 30(2): 431-437.
[9] [Zhu Bonian, Dang Xiaohong, Meng Zhongju, et al. Effects of biodegradable poly lactic acid (PLA) sand barrier on wind prevention and sand fixation in the Urumqin Sandy Land[J]. Research of Soil and Water Conservation, 2023, 30(2): 431-437.]
[10] 高晓杰, 陈晓梅, 韩忆军. 乌珠穆沁草原气候变化与沙尘暴趋势分析[J]. 干旱区资源与环境, 2004, 18(1): 266-268.
[10] [Gao Xiaojie, Chen Xiaomei, Han Yijun. Analysis of climate change and sandstorm trends in the Uzhumuqin Grassland[J]. Journal of Arid Land Resources and Environment, 2004, 18(1): 266-268.]
[11] 曹子龙. 内蒙古中东部沙化草地植被恢复若干基础问题的研究[D]. 北京: 北京林业大学, 2007.
[11] [Cao Zilong. Basic Studies on Vegetation Restoration of Desertification Grassland in Mid-Eastern Inner Mongolia[D]. Bejing: Beijing Forestry University, 2007.]
[12] 黄海广, 韩兆恩, 党晓宏, 等. 基于3S技术的乌珠穆沁沙地近20 a动态变化特征[J]. 内蒙古林业科技, 2021, 47(4): 13-18.
[12] [Huang Haiguang, Han Zhao’en, Dang Xiaohong, et al. Dynamic change characteristics of Ujimqin Sandy Land during recent 20 years based on 3S technology[J]. Journal of Inner Mongolia Forestry Science & Technology, 2021, 47(4): 13-18.]
[13] 巩国丽, 刘纪远, 邵全琴. 基于RWEQ的20世纪90年代以来内蒙古锡林郭勒盟土壤风蚀研究[J]. 地理科学进展, 2014, 33(6): 825-834.
[13] [Gong Guoli, Liu Jiyuan, Shao Quanqin. Wind erosion in Xilingol League, Inner Mongolia since the 1990s using the revised wind erosion equation[J]. Progress in Geography, 2014, 33(6): 825-834.]
[14] 姜艳丰, 王炜, 王立新, 等. 内蒙古西乌珠穆沁旗伏沙地土壤环境粒度特征分析[J]. 内蒙古环境科学, 2007, 19(3): 65-67.
[14] [Jiang Yanfeng, Wang Wei, Wang Lixin, et al. Analysis of soil environmental grain size characteristics in the underlying sandy land of Xiwuzhumuqin Banner, Inner Mongolia[J]. Inner Mongolia Environmental Science, 2007, 19(3): 65-67.]
[15] 侯健. 内蒙古乌珠穆沁盆地伏沙地的成因及其分布范围的研究[D]. 呼和浩特: 内蒙古大学, 2010.
[15] [Hou Jian. The Study of The Causes and Distribution of Sinking Sandy Land in Inner Mongolia Wuzhumuqin Basin[D]. Hohhot: Inner Mongolia University, 2010.]
[16] 吴正. 风沙地貌学[M]. 北京: 科学出版社, 1987: 38-39.
[16] [Wu Zheng. Aeolian Geomorphology[M]. Beijing: Science Press, 1987: 38-39.]
[17] Fryberger S G, Dean G. Dune forms and wind regime[C]// Mckee E D. A Study of Global Sand Seas Washington: United States Government Printing Office, 1979: 137-169.
[18] Folk R L, Ward W C. Brazos River bar: A study in the significance of grain size parameters[J]. Journal of Sedimentary Research, 1957, 27(1): 3-26.
[19] Udden J A. Mechanical composition of clastic sediments[J]. The Geological Society of America Bulletin, 1914, 25(1): 655-744.
[20] 邢文娟, 雷加强, 王海峰, 等. 荒漠-绿洲过渡带风况及输沙势分析——以策勒县为例[J]. 干旱区研究, 2008, 25(6): 894-898.
[20] [Xing Wenjuan, Lei Jiaqiang, Wang Haifeng, et al. Analysis on wind regime and wind borne sand potential in a desert-oasis ecotone: A case study in Qira County, Xinjiang[J]. Arid Zone Research, 2008, 25(6): 894-898.]
[21] 周炎广, 王卓然, 青达木尼, 等. 浑善达克沙地固定沙丘风蚀坑形态变化及其动力学机制[J]. 科学通报, 2023, 68(11): 1298-1311.
[21] [Zhou Yanguang, Wang Zhuoran, Qing Damuni, et al. Morphological changes and dynamic mechanism of blowouts on fixed dunes in the Otingdag Sandy Land, China[J]. Chinese Science Bulletin, 2023, 68(11): 1298-1311.]
[22] 赵媛媛, 武海岩, 丁国栋, 等. 浑善达克沙地土地沙漠化研究进展[J]. 中国沙漠, 2020, 40(5): 101-111.
[22] [Zhao Yuanyuan, Wu Haiyan, Ding Guodong, et al. A review on the aeolian desertification in the Otindag Sandy Land[J]. Journal of Desert Research, 2020, 40(5): 101-111.]
[23] 白永飞, 陈世苹. 中国草地生态系统固碳现状、速率和潜力研究[J]. 植物生态学报, 2018, 42(3): 261-264.
[23] [Bai Yongfei, Chen Shiping. Carbon sequestration of Chinese grassland ecosystems: Stock, rate and potential[J]. Chinese Journal of Plant Ecology, 2018, 42(3): 261-264.]
[24] 王文颖, 王启基, 王刚, 等. 高寒草甸土地退化及其恢复重建对植被碳、氮含量的影响[J]. 植物生态学报, 2007, 31(6): 1073-1078.
[24] [Wang Wenying, Wang Qiji, Wang Gang, et al. Effects of land degradation and rehabilition on vegetation carbon and nitrogen content of alpine meadow in China[J]. Journal of Plant Ecology, 2007, 31(6): 1073-1078.]
[25] 韩维峥. 吉林西部草地退化恢复与碳收支的耦合研究[D]. 长春: 吉林大学, 2011.
[25] [Han Weizheng. Coupling Analysis on Restoration of the Degraded Grassland Ecosystem and Carbon Budget in Western Jilin Province[D]. Changchun: Jilin University, 2011.]
[26] 宋洁, 春喜, 白雪梅, 等. 中国沙漠粒度分析研究综述[J]. 中国沙漠, 2016, 36(3): 597-603.
[26] [Song Jie, Chun Xi, Bai Xuemei, et al. Review of grain size analysis in China desert[J]. Jounal of Desert Research, 2016, 36(3): 597-603.]
[27] 庞立东, 刘桂香. 近二十年内蒙古西乌珠穆沁草原景观结构变化及驱动力浅析[J]. 干旱区资源与环境, 2010, 24(10): 155-160.
[27] [Pang Lidong, Liu Guixiang. Grassland landscape structure change and its driving factors during past twenty years in Xiwuzhumuqin, Inner Mongolia[J]. Journal of Arid Land Resources and Environment, 2010, 24(10): 155-160.]
[28] 苏日古嘎, 通嘎拉, 刘素军. 西乌珠穆沁旗草原灌丛化群落对土壤粒径的响应研究[J]. 内蒙古师范大学学报(自然科学汉文版), 2020, 49(4): 320-326.
[28] [Suriguga, Tonggala, Liu Sujun. Research on the response of grassland thicketization to soil particle size in West Ujimqin Banner[J]. Journal of Inner Mongolia Normal University (Natural Science Edition), 2020, 49(4): 320-326.]
[29] Blott S J, Pye K. Gradistat: A grain size distribution and statistics package for the analysis of unconsolidated sediments[J]. Earth Surface Processes and Landforms, 2001, 26(11): 1237-1248.
[30] 孙佳琦. 巴丹吉林沙漠地区风况与风能环境观测研究[D]. 兰州: 兰州大学, 2020.
[30] [Sun Jiaqi. Wind Regime and Drift Potential in the Badain Jaran Desert Based Observation[D]. Lanzhou: Lanzhou University, 2020.]
文章导航

/