新疆天山东部森林地表可燃物的热值研究
收稿日期: 2023-02-07
修回日期: 2023-05-09
网络出版日期: 2023-11-01
基金资助
新疆森林可燃物调查与分析(所级横向课题E240010301)
Calorific values of forest surface fuels in the eastern Tianshan Mountains of Xinjiang, China
Received date: 2023-02-07
Revised date: 2023-05-09
Online published: 2023-11-01
森林地表可燃物是林火传播的重要因素之一,而热值又是表征可燃物燃烧性的重要指标。以新疆天山东部4种典型植被类型下地表可燃物为研究对象,分析地表可燃物热值特征及其与燃点、绝对含水率之间的关系。结果表明:针叶林和阔叶林中,草本与凋落物组分之间差异显著,灌木林中,灌木与凋落物组分之间差异显著;天山东部林区同一林型不同组分热值大小顺序为:凋落物>草本>灌木>腐殖质;草本可燃物组分中针叶林的热值最高(19.38±0.08 kJ·g-1),凋落物可燃物组分中同样是针叶林的热值最高(19.55±0.05 kJ·g-1);不同组分地表可燃物热值与燃点间的关系存在差异:灌木可燃物组分燃点与热值存在极显著关系(R2=0.81,P<0.01),凋落物可燃物组分燃点与热值存在显著相关性(R2=0.38,P<0.05),然而草本和腐殖质可燃物组分燃点与热值间无显著相关(P>0.05);另外,所有林型的地表可燃物热值与绝对含水率之间均无显著相关关系。可见,林型、树种以及理化性质等条件综合影响着可燃物的热值含量。研究结果旨在为天山东部森林管理人员准确预测林内可燃物热值能量和潜在森林火险提供理论依据,为区域地表可燃物深入研究提供数据支撑。
周翔 , 王鹏 , 布玛丽亚穆·麦麦提 , 王秋琰 , 岳健 . 新疆天山东部森林地表可燃物的热值研究[J]. 干旱区研究, 2023 , 40(10) : 1670 -1677 . DOI: 10.13866/j.azr.2023.10.13
Forest surface combustibles are one of the important factors in forest fire propagation, and their calorific values are an important index by which to assess combustibility. This study has aimed to assess the surface fuels available in four typical vegetation types in the eastern Tianshan Mountains of Xinjiang, China. The characteristics of the surface fuel calorific values and relationship with ignition point and absolute moisture content were analyzed. The results show that in coniferous and broad-leaved forests, there were significant differences between herb and litter components, while in shrub forest, there were significant differences between shrub and litter components. Within the same forest the calorific values were litter > herb > shrub > humus. The calorific values in the coniferous forests were the highest among the herbaceous fuel components (19.38 ± 0.08 kJ·g-1), while those in the coniferous forests were highest among the litter fuel components (19.55 ± 0.05 kJ·g-1). Differences were identified in the relationship between the calorific value and the ignition point of the surface combustibles for the different components. There was a significant correlation between the burning point of the shrub fuel components and the calorific value (R2 = 0.81, P < 0.01), and between the burning point of litter fuel components and the calorific value (R2 = 0.38, P < 0.05). However, there was no significant correlation between the burning point and calorific value of the herbs and humus (P > 0.05). In addition, there was no significant correlation between the calorific values of the surface fuel and the absolute moisture content of all forest types. Forest type, tree species, physical and chemical properties, and other conditions were thus found to have a comprehensive effect on the calorific values of the different fuels. The results of this study provide a theoretical basis for forest fire management in the eastern Tianshan Mountains as they will help to accurately predict the calorific energy and potential forest fire risks and provide data support for in-depth research on regional surface fuels.
[1] | Neumann M, Vila-Vilarde L, Muller M, et al. Fuel loads and fuel structure in Austrian coniferous forests[J]. International Journal of Wildland Fire, 2022, 31(7): 693-707. |
[2] | 孙龙, 鲁佳宇, 魏书精, 等. 森林可燃物载量估算方法研究进展[J]. 森林工程, 2013, 29(2): 26-31. |
[2] | [Sun Long, Lu Jiayu, Wei Shujing, et al. Research progress of forest fuel load estimation methods[J]. Forest Engineering, 2013, 29(2): 26-31.] |
[3] | 高国平, 周志权, 王忠友. 森林可燃物研究综述[J]. 辽宁林业科技, 1998(4): 34-37. |
[3] | [Gao Guoping, Zhou Zhiquan, Wang Zhongyou. A review of forest fuel research[J]. Journal of Liaoning Forestry Science & Technology, 1998(4): 34-37.] |
[4] | Jones M W, Abatzoglou J T, Veraverbeke S, et al. Global and regional trends and drivers of fire under climate change[J]. Reviews of Geophysics, 2022, 60: e2020RG000726. |
[5] | 梁瀛, 张思玉, 努尔古丽, 等. 天山中部林区主要树种理化性质及燃烧性分析[J]. 林业科学, 2011, 47(12): 101-105. |
[5] | [Liang Ying, Zhang Siyu, Nu Erguli, et al. Physical and chemical properties and combustibility of main wood species in the central part of Tianshan Mountains[J]. Scientia Silvae Sinicae, 2011, 47(12): 101-105.] |
[6] | 满子源, 孙龙, 胡海清, 等. 南方8种森林地表死可燃物在平地无风时的燃烧蔓延速率与预测模型[J]. 林业科学, 2019, 55(7): 197-204. |
[6] | [Man Ziyuan, Sun Long, Hu Haiqing, et al. Prediction model of the spread rate of eight typical surface dead fuel in southern China under windless and flat land[J]. Scientia Silvae Sinicae, 2019, 55(7): 197-204.] |
[7] | Arroyo L A, Pascual C, Manzanera J A. Fire models and methods to map fuel types: The role of remote sensing[J]. Forest Ecology and Management, 2008, 256(6): 1240-1247. |
[8] | 周涧青, 刘晓东, 张思玉. 兴安落叶松人工林地表可燃物分布研究[J]. 森林防火, 2019, 37(1): 19-23. |
[8] | [Zhou Jianqing, Liu Xiaodong, Zhang Siyu. Study on the distribution of surface combustibles in Larix gmelinii plantation[J]. Journal of Wildland Fire Science, 2019, 37(1): 19-23.] |
[9] | Gautam S, Pulkki R, Shahi C, et al. Fuel quality changes in full tree logging residue during storage in roadside slash piles in Northwestern Ontario[J]. Biomass Bioenergy, 2012, 42: 43-50. |
[10] | 潘登. 南亚热带典型人工林可燃物空间分布及潜在火行为研究[D]. 长沙: 中南林业科技大学, 2017. |
[10] | [Pan Deng. Distribution of Fuel and Potential Fire Behavior of Typical Plantations in Southern China[D]. Changsha: Central South University of Forestry and Technology, 2017.] |
[11] | Ovington J D, Heitkamp D. The accumulation of energy in forest plantations in Britain[J]. Ecology, 1960, 48(3): 639-646. |
[12] | Bliss L C. Caloric and lipid content in alpine tundra plants[J]. Ecology, 1962, 43(4): 753-757. |
[13] | Golley F B. Caloric value of wet tropical forest vegetation[J]. Ecology, 1969, 50(3): 517-519. |
[14] | Lunguleasa A, Spirchez C, Zeleniuc O. Evaluation of the calorific values of wastes from some tropical wood species[J]. Maderas: Cienciay Tecnologia, 2020, 22(3): 269-280. |
[15] | 包艳丽, 牛树奎, 孙国庆, 等. 阿尔泰山主要林型燃烧性研究[J]. 干旱区资源与环境, 2010, 24(4): 134-137. |
[15] | [Bao Yanli, Niu Shukui, Sun Guoqing, et al. The combustibility about major forest types in Altay mountains[J]. Journal of Arid Land Resources and Environment, 2010, 24(4): 134-137.] |
[16] | 何诚, 舒立福, 张思玉, 等. 大兴安岭森林草原地下火阴燃特征研究[J]. 西南林业大学学报(自然科学), 2020, 40(2): 103-110. |
[16] | [He Cheng, Shu Lifu, Zhang Siyu, et al. Research on underground fire smouldering characteristics of forest steppe in Great Xing’an Mountains in Heilongjiang Province[J]. Journal of Southwest Forestry University, 2020, 40(2): 103-110.] |
[17] | 赵凤君, 王秋华, 舒立福, 等. 大兴安岭针叶可燃物的热值和燃点与其超临界萃取物含量的相关性[J]. 林业科学, 2016, 52(4): 68-74. |
[17] | [Zhao Fengjun, Wang Qiuhua, Shu Lifu, et al. Correlations between supercritical extracts of coniferous fuel and the heat yield value and ignition point[J]. Scientia Silvae Sinicae, 2016, 52(4): 68-74.] |
[18] | 王秋华, 肖慧娟, 刘文国, 等. 昆明西山森林公园主要林型地表可燃物的潜在燃烧性[J]. 福建林业科技, 2014, 41(1): 40-44. |
[18] | [Wang Qiuhua, Xiao Huijuan, Liu Wenguo, et al. Study on potential combustibility of ground fuels in Kunming Xishan National Forest Park[J]. Journal of Fujian Forestry Science and Technology, 2014, 41(1): 40-44.] |
[19] | 闫想想, 王秋华, 李彩松, 等. 昆明重大森林火灾火烧迹地可燃物研究[J]. 西南林业大学学报(自然科学), 2019, 39(5): 157-164. |
[19] | [Yan Xiangxiang, Wang Qiuhua, Li Caisong, et al. Combustibles in fires of major forest fires in Kunming[J]. Journal of Southwest Forestry University, 2019, 39(5): 157-164.] |
[20] | 王秋华, 肖慧娟, 徐盛基, 等. 滇中安宁“3·29”重大森林火灾火烧迹地灌木林的燃烧性研究[J]. 安全与环境学报, 2016, 16(1): 138-141. |
[20] | [Wang Qiuhua, Xiao Huijuan, Xu Shengji, et al. Retrogressive study and analysis of the burning features of the shrubs in the fire taking place on 29 March 2006 in Anning, Yunnan[J]. Journal of Safety and Environment, 2016, 16(1): 138-141.] |
[21] | 田甜, 邸雪颖. 森林地表可燃物含水率变化机理及影响因子研究概述[J]. 森林工程, 2013, 29(2): 21-25. |
[21] | [Di Xueying. Research review on change mechanism and impact factors of forest surface fuel moisture[J]. Forest Engineering, 2013, 29(2): 21-25.] |
[22] | 黄钰辉, 官丽莉, 周国逸, 等. 西双版纳热带季节雨林和哀牢山中山湿性常绿阔叶林优势植物及地表凋落物层的热值[J]. 植物生态学报, 2007, 31(3): 457-463. |
[22] | [Huang Yuhui, Guan Lili, Zhuo Guoyi, et al. Gross caloric values of dominant species and litter layer in mid-montane moist evergreen broad-leaved forest in Ailao mountain and in tropical season rain forest in Xishu-angbanna, Yunnan, China[J]. Chinese Journal of Plant Ecology, 2007, 31(3): 457-463.] |
[23] | 朱美琴, 叶功富, 游水生, 等. 东山岛海岸带季风常绿阔叶林各层次优势种的热值[J]. 福建农林大学学报(自然科学版), 2012, 41(3): 248-252. |
[23] | [Zhu Meiqin, Ye Gongfu, You Shuisheng, et al. Caloric values of the dominant species from different layers of monsoon evergreen broad-leaved forest at Dongshan Island[J]. Journal of Fujian Agriculture and Forestry University, 2012, 41(3): 248-252.] |
[24] | 李颖, 严思晓, 张秀芳, 等. 武夷山国家公园内4种森林类型地表可燃物热值特征比较[J]. 应用与环境生物学报, 2020, 26(6): 1385-1391. |
[24] | [Li Ying, Yan Sixiao, Zhang Xiufang, et al. Comparison of surface fuel calorific value characteristics of four forest types in Wuyishan National Park[J]. Chinese Journal of Applied and Environmental Biology, 2020, 26(6): 1385-1391.] |
[25] | 杨春勐, 张树斌, 陈爱国, 等. 干热河谷稀树灌丛优势植物叶片热值及养分特征[J]. 森林与环境学报, 2019, 39(1): 54-60. |
[25] | [Yang Chunmeng, Zhang Shubing, Chen Aiguo, et al. Caloric value and nutrients in the leaves of dominant savanna plant species in Yuanjiang dry-hot valley[J]. Journal of Forest and Environment, 2019, 39(1): 54-60.] |
[26] | 林益明, 林鹏, 王通. 几种红树植物木材热值和灰分含量的研究[J]. 应用生态学报, 2000, 11(2): 181-184. |
[26] | [Lin Yiming, Lin Peng, Wang Tong. Caloric values and ash contents of some mangrove woods[J]. Chinese Journal of Applied Ecology, 2000, 11(2): 181-184.] |
[27] | 云丽丽, 王睿照, 刘晗琪, 等. 4种主要林型可燃物载量及其燃烧性研究[J]. 辽宁林业科技, 2021(5): 26-30. |
[27] | [Yun Lili, Wang Ruizhao, Liu Hanqi, et al. Fuel loads and its combustibility of four main forest types[J]. Liaoning Forestry Science & Technology, 2021(5): 26-30.] |
[28] | 努尔古丽·马坎, 张毓涛, 岳朝阳, 等. 天山中部9种乔灌木可燃物含水率及脂肪含量分析[J]. 安徽农业大学学报, 2012, 39(6): 925-929. |
[28] | [Nuerguli Makan, Zhang Yutao, Yue Zhaoyang, et al. Analysis of the water content and fuel moisture content of forest combustible in the center of Tianshan Mountains[J]. Journal of Anhui Agricultural University, 2012, 39(6): 925-929.] |
/
〈 | 〉 |