水土资源

托木尔峰青冰滩72号冰川表碛区夏季消融模拟研究

  • 何捷 ,
  • 王璞玉 ,
  • 李宏亮 ,
  • 李忠勤 ,
  • 周平 ,
  • 牟建新 ,
  • 余凤臣 ,
  • 戴玉萍
展开
  • 1.中国科学院西北生态环境资源研究院, 冰冻圈科学国家重点实验室, 甘肃 兰州 730000
    2.中国科学院大学, 北京 100049
    3.石河子大学理学院, 新疆 石河子 832000
何捷(1999-), 男, 硕士研究生, 主要从事山地冰川模拟研究. E-mail: hejie@nieer.ac.cn

收稿日期: 2023-02-20

  修回日期: 2023-04-28

  网络出版日期: 2023-11-01

基金资助

第三次新疆综合科学考察项目(2022xjkk0101);国家自然科学基金项目(42371148);中国科学院青年创新促进会项目(Y2021110)

Simulation study of summer ablation in the debris area of Qingbingtan Glacier No. 72 in Mt. Tomor

  • Jie HE ,
  • Puyu WANG ,
  • Hongliang LI ,
  • Zhongqin LI ,
  • Ping ZHOU ,
  • Jianxin MU ,
  • Fengchen YU ,
  • Yuping DAI
Expand
  • 1. State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China
    2. University of the Chinese Academy of Sciences, Beijing 100049, China
    3. College of Science, Shihezi University, Shihezi 832000, Xinjiang, China

Received date: 2023-02-20

  Revised date: 2023-04-28

  Online published: 2023-11-01

摘要

表碛覆盖型冰川在我国西部分布广泛,由于该类型冰川消融区域不同程度的被岩石碎屑所覆盖,消融状况与非表碛覆盖型冰川有较大差异,因此,开展表碛覆盖型冰川的消融模拟研究至关重要。本文以冰面气象数据为驱动,使用表碛覆盖型冰川能量平衡模型对天山托木尔峰青冰滩72号冰川表碛区进行能量和消融模拟。基于热传导过程和能量平衡方程,模型计算了表碛表面温度以及表碛层内部温度,并通过表碛内部温度估算下覆冰的消融量。结果表明: 2008年夏季期间模型模拟的消融量为0.39 m w.e.,与消融花杆数据进行验证取得了较高的模拟精度(R2=0.92, RMSE=±0.03 m w.e.),表碛表面温度和内部10 cm深处温度的模拟值也与实测数据拟合较好(R2分别为0.91和0.60)。在表碛区的能量交换过程中,净短波辐射是唯一的能量收入项,感热通量是最大的能量支出项(49.7%),其次分别为传导热通量(消融耗热)(25.8%),净长波辐射(19.8%)和潜热通量(4.6%),降水热量不足1%。云量对表碛区的气象和能量特征有着显著的影响,阴天条件下表碛区的入射短波辐射峰值从晴天的854 W·m-2降至587 W·m-2,下行长波辐射和相对湿度增加,平均消融量比晴天减少了12%。此外,对表碛关键参数的敏感性分析表明,模拟的消融量对导热系数的变化最为敏感,反照率和表面粗糙度的变化量同样不可忽视。

本文引用格式

何捷 , 王璞玉 , 李宏亮 , 李忠勤 , 周平 , 牟建新 , 余凤臣 , 戴玉萍 . 托木尔峰青冰滩72号冰川表碛区夏季消融模拟研究[J]. 干旱区研究, 2023 , 40(10) : 1595 -1607 . DOI: 10.13866/j.azr.2023.10.06

Abstract

Debris-covered glaciers are widely distributed in Western China. Their ablation areas are covered by varying degrees of rock debris, and consequently, their melting statuses differ greatly when compared to debris-free glaciers. There is currently a need for melting simulations to better understand debris-covered glaciers. In this paper, driven by field meteorological data, an energy balance model for debris-covered glaciers has been used to simulate the energy and ablation in debris-covered areas of Qingbingtan Glacier No. 72 in Mt. Tomor, Tianshan. Based on the heat conduction process and the energy balance equation, the model calculates the debris surface temperature and the internal temperature of the debris, then estimates the subdebris melt using the internal debris temperature. The results showed that the modeled ablation was 0.39 m w.e. in the summer of 2008, and the simulation accuracy (R2 = 0.92, RMSE = ±0.03 m w.e.) was higher when compared with the field data. The simulated debris temperatures at the surface and a depth of 10 cm inside the debris were also found to fit well with the measured data (R2 = 0.91 and 0.60, respectively). During energy exchange in the debris area, net shortwave radiation was the only energy income item, and sensible heat flux was the largest energy expenditure item (49.7%), followed by the heat conduction flux (ablation heat consumption) (25.8%), net longwave radiation (19.8%), and latent heat flux (4.6%), while precipitation heat was <1%. Cloud cover had a significant impact on the meteorological and energy characteristics of the debris area. Under overcast conditions, the incoming shortwave radiation in the debris area decreased from 854 W·m-2 on sunny days to 587 W·m-2, while the downward longwave radiation and relative humidity increased, and the average ablation decreased by 12%, when compared with sunny days. In addition, the sensitivity analysis of the key parameters for debris shows that the simulated ablation is most sensitive to the changes in thermal conductivity, and the changes in albedo and surface roughness cannot be ignored.

参考文献

[1] 施雅风. 2050年前气候变暖冰川萎缩对水资源影响情景预估[J]. 冰川冻土, 2001, 23(4): 333-341.
[1] [Shi Yafeng. Estimation of the water resources affected by climatic warming and glacier shrinkage before 2050 in West China[J]. Journal of Glaciology and Geocryology, 2001, 23(4): 333-341.]
[2] 姚檀栋, 刘时银, 蒲健辰, 等. 高亚洲冰川的近期退缩及其对西北水资源的影响[J]. 中国科学: D辑地球科学, 2004, 34(6): 535-543.
[2] [Yao Tandong, Liu Shiyin, Pu Jianchen, et al. Recent recession of High Asian glaciers and their impacts on water resources in Northwest China[J]. Science in China:Series D Earth Sciences, 2004, 34(6): 535-543.]
[3] Bates B, Kundzewicz Z W, Wu S, et al. Climate Change and Water:Technical Paper VI[M]. Intergovernmental Panel on Climate Change(IPCC), 2008.
[4] 刘时银, 张勇, 刘巧, 等. 气候变化对冰川影响与风险研究[M]. 北京: 科学出版社, 2017.
[4] [Liu Shiyin, Zhang Yong, Liu Qiao, et al. Study on the Impact of Climate change on Glacier and Its Risk[M]. Beijing: Science Press, 2017.]
[5] ?strem G. Ice melting under a thin layer of moraine, and the existence of ice cores in moraine ridges[J]. Geografiska Annaler, 1959, 41(4): 228-230.
[6] Nakawo M, Young G J. Field experiments to determine the effect of a debris layer on ablation of glacier ice[J]. Annals of Glaciology, 1981, 2: 85-91.
[7] Nicholson L, Benn D I. Calculating ice melt beneath a debris layer using meteorological data[J]. Journal of Glaciology, 2006, 52(178): 463-470.
[8] Evatt G W, Abrahams I D, Heil M, et al. Glacial melt under a porous debris layer[J]. Journal of Glaciology, 2015, 61(229): 825-836.
[9] Giese A, Boone A, Wagnon P, et al. Incorporating moisture content in surface energy balance modeling of a debris-covered glacier[J]. The Cryosphere, 2020, 14(5): 1555-1577.
[10] Rounce D R, Quincey D J, McKinney D C. Debris-covered glacier energy balance model for Imja-Lhotse Shar Glacier in the Everest region of Nepal[J]. The Cryosphere, 2015, 9(6): 2295-2310.
[11] Han Haidong, Wang Jian, Wei Junfeng, et al. Backwasting rate on debris-covered Koxkar glacier, Tuomuer mountain, China[J]. Journal of Glaciology, 2010, 56(196): 287-296.
[12] Yang Wei, Yao Tandong, Zhu Meilin, et al. Comparison of the meteorology and surface energy fluxes of debris-free and debris-covered glaciers in the southeastern Tibetan Plateau[J]. Journal of Glaciology, 2017, 63(242): 1090-1104.
[13] Zhang Yong, Fujita K, Liu Shiyin, et al. Distribution of debris thickness and its effect on ice melt at Hailuogou Glacier, southeastern Tibetan Plateau, using in situ surveys and ASTER imagery[J]. Journal of Glaciology, 2011, 57(206): 1147-1157.
[14] 张勇, 刘时银. 中国冰川区表碛厚度估算及其影响研究进展[J]. 地理学报, 2017, 72(9): 1606-1620.
[14] [Zhang Yong, Liu Shiyin. Research progress on debris thickness estimation and its effect on debris-covered glaciers in western China[J]. Acta Geographica Sinica, 2017, 72(9): 1606-1620.]
[15] 谢昌卫, 丁永建, 刘时银, 等. 托木尔峰南麓径流变化的气候因素分析[J]. 冰川冻土, 2005, 27(2): 269-275.
[15] [Xie Changwei, Ding Yongjian, Liu Shiyin, et al. Runoff change on the South slopes of Mount Tomur and its response to climatic variation[J]. Journal of Glaciology and Geocryology, 2005, 27(2): 269-275.]
[16] 陈亚宁, 李稚, 范煜婷, 等. 西北干旱区气候变化对水文水资源影响研究进展[J]. 地理学报, 2014, 69(9): 1295-1304.
[16] [Chen Yaning, Li Zhi, Fan Yuting, et al. Research progress on the impact of climate change on water resources in the arid region of Northwest China[J]. Acta Geographica Sinica, 2014, 69(9): 1295-1304.]
[17] 施雅风. 简明中国冰川目录[M]. 上海: 上海科学普及出版社, 2005.
[17] [Shi Yafeng. China Concise Glacier Inventory[M]. Shanghai: Shanghai Popular Science Press, 2005.]
[18] 中国科学院登山科学考察队. 天山托木尔峰地区的冰川与气象[M]. 乌鲁木齐: 新疆人民出版社, 1985.
[18] [Mountaineering Expedition of Chinese Academy of Science. Glaciers and Meteorology in the Tumor Region of the Tianshan Mountains[M]. Urumqi: Xinjiang People’s Press, 1985.]
[19] Aizen V B, Aizen E M, Melack J M. Precipitation, melt and runoff in the northern Tien Shan[J]. Journal of Hydrology, 1996, 186(1): 229-251.
[20] 李忠勤, 李开明, 王林. 新疆冰川近期变化及其对水资源的影响研究[J]. 第四纪研究, 2010, 30(1): 96-106.
[20] [Li Zhongqin, Li Kaiming, Wang Lin. Study on recent glacier changes and their impact on water resources in Xinjiang, North western China[J]. Quaternary Sciences, 2010, 30(1): 96-106.]
[21] 王璞玉, 李忠勤, 曹敏, 等. 近45年来托木尔峰青冰滩72号冰川变化特征[J]. 地理科学, 2010, 30(6): 962-967.
[21] [Wang Puyu, Li Zhongqin, Cao Min, et al. Variation of Qingbingtan Glacier No.72 in Mt. Tuomuer region during past 45 years[J]. Scientia Geographica Sinica, 2010, 30(6): 962-967.]
[22] Wang Puyu, Li Zhongqin, Wang Wenbin, et al. Changes of six selected glaciers in the Tomor region, Tian Shan, Central Asia, over the past- 50 years, using high-resolution remote sensing images and field surveying[J]. Quaternary International, 2013, 311: 123-131.
[23] Wang Puyu, Li Zhongqin, Li Huilin, et al. Characteristics of a partially debris-covered glacier and its response to atmospheric warming in Mt. Tomor, Tien Shan, China[J]. Global and Planetary Change, 2017, 159: 11-24.
[24] 车彦军, 张明军, 李忠勤, 等. 2008—2014年青冰滩72号冰川消融特征分析[J]. 冰川冻土, 2020, 42(2): 318-331.
[24] [Che Yanjun, Zhang Mingjun, Li Zhongqin, et al. Understanding the mass balance characteristics of Qingbingtan Glacier No.72 during the period of 2008-2014[J]. Journal of Glaciology and Geocryology, 2020, 42(2): 318-331.]
[25] Wang Puyu, Li Zhongqin, Li Huilin, et al. Ice surface-elevation change and velocity of Qingbingtan glacier No. 72 in the Tomor region, Tianshan Mountains, Central Asia[J]. Journal of Mountain Science, 2011, 8(6): 855-864.
[26] 曹敏, 李忠勤, 李慧林. 天山托木尔峰地区青冰滩72号冰川表面运动速度特征研究[J]. 冰川冻土, 2011, 33(1): 21-29.
[26] [Cao Min, Li Zhongqin, Li Huilin. Features of surface flow velocity on the Qingbingtan Glacier No. 72, Tianshan Mountains[J]. Journal of Glaciology and Geocryology, 2011, 33(1): 21-29.]
[27] Van Den Broeke M, Reijmer C, Van As D, et al. Daily cycle of the surface energy balance in Antarctica and the influence of clouds[J]. International Journal of Climatology, 2006, 26(12): 1587-1605.
[28] Reid T D, Brock B W. An energy-balance model for debris-covered glaciers including heat conduction through the debris layer[J]. Journal of Glaciology, 2010, 56(199): 903-916.
[29] Brock B W, Mihalcea C, Kirkbride M P, et al. Meteorology and surface energy fluxes in the 2005-2007 ablation seasons at the Miage debris-covered glacier, Mont Blanc Massif, Italian Alps[J]. Journal of Geophysical Research: Atmospheres, 2010, 115(D9106): 1-16.
[30] Strasser U, Corripio J, Pellicciotti F, et al. Spatial and temporal variability of meteorological variables at Haut Glacier d’Arolla (Switzerland) during the ablation season 2001: Measurements and simulations[J]. Journal of Geophysical Research: Atmospheres, 2004, 109(D03103): 1-18.
[31] Idso S B. A set of equations for full spectrum and 8-to 14-μm and 10.5-to 12.5-μm thermal radiation from cloudless skies[J]. Water Resources Research, 1981, 17(2): 295-304.
[32] Unsworth M H, Monteith J L. Long-wave radiation at the ground I. Angular distribution of incoming radiation[J]. Quarterly Journal of the Royal Meteorological Society, 1975, 101(427): 13-24.
[33] Brutsaert W. Evaporation into the Atmosphere: Theory, History and Applications[M]. New York: Springer, 1982.
[34] 方潇雨, 李忠勤, Bernd Wuennemann, 等. 冰川消融模式及其对比研究——以祁连山黑河流域十一冰川研究为例[J]. 冰川冻土, 2015, 37(2): 336-350.
[34] [Fang Xiaoyu, Li Zhongqin, Bernd Wuennemann, et al. Physical energy-balance and statistical glacier melting models comparison and testing for Shiyi Glacier, Heihe River Basin, Qilian Mountains, China[J]. Journal of Glaciology and Geocryology, 2015, 37(2): 336-350.]
[35] Oke T R. Boundary Layer Climates[M]. 2nd ed. New York: Routledge, 1987.
[36] Moore R D. On the use of bulk aerodynamic formulae over melting snow[J]. Hydrology Research, 1983, 14(4): 193-206.
[37] 谢自楚, 刘潮海. 冰川学导论[M]. 上海: 上海科学普及出版社, 2010.
[37] [Xie Zichu, Liu Chaohai. Introduction to Glaciology[M]. Shangha: Shanghai Science Popularization Press, 2010.]
[38] 怀保娟, 李忠勤, 孙美平, 等. 近40 a来天山台兰河流域冰川资源变化分析[J]. 地理科学, 2014, 34(2): 229-236.
[38] [Huai Baojuan, Li Zhongqin, Sun Meiping, et al. Glaciers change in the Tailan River watershed in the last 40 years[J]. Scientia Geographica Sinica, 2014, 34(2): 229-236.]
[39] 寇有观, 丁良福, 李文忠, 等. 托木尔峰地区的冰川气象[J]. 冰川冻土, 1980, 2(4) : 11-14.
[39] [Kou Youguan, Ding Liangfu, Li Wenzhong, et al. Glacial meteorology on Mt. Tuomuer[J]. Journal of Glaciology and Geocryology, 1980, 2(4): 11-14.]
[40] 韩海东, 刘时银, 丁永健, 等. 科其喀尔巴西冰川的近地层基本气象特征[J]. 冰川冻土, 2008, 30(6): 967-975.
[40] [Han Haidong, Liu Shiyin, Ding Yongjian, et al. Near-surface meteorological characteristics on the Koxkar Baxi Glacier, Tianshan[J]. Journal of Glaciology and Geocryology, 2008, 30(6): 967-975.]
[41] 韩海东, 丁永建, 刘时银. 科奇喀尔冰川夏季表碛区热量平衡参数的估算分析[J]. 冰川冻土, 2005, 27(1): 88-94.
[41] [Han Haidong, Ding Yongjian, Liu Shiyin. Estimation and analysis of heat balance parameters in the ablation season of debris-covered Kerqikaer Glacier, Tianshan Mountains[J]. Journal of Glaciology and Geocryology, 2005, 27(1): 88-94.]
[42] Steiner J F, Pellicciotti F, Buri P, et al. Modelling ice-cliff backwasting on a debris-covered glacier in the Nepalese Himalaya[J]. Journal of Glaciology, 2015, 61(229): 889-907.
[43] Collier E, Maussion F, Nicholson L I, et al. Impact of debris cover on glacier ablation and atmosphere-glacier feedbacks in the Karakoram[J]. The Cryosphere, 2015, 9(4): 1617-1632.
文章导航

/