植物生态

盐碱胁迫对菊芋渗透调节及抗氧化酶系统的影响

  • 钱玥 ,
  • 李思源 ,
  • 饶良懿
展开
  • 1.北京林业大学水土保持学院,北京 100083
    2.北京林业大学林业生态工程教育部工程研究中心,北京 100083
钱玥(1997-),女,硕士研究生,从事生态工程与生态系统修复研究. E-mail: qianyuemoon@163.com

收稿日期: 2023-04-24

  修回日期: 2023-06-15

  网络出版日期: 2023-09-28

基金资助

中建股份科技研发计划“西北地区生态环境保护与修复关键技术研究与应用(CSCEC-2020-Z-5);北京市科技新星计划(2006A22)

Effects of saline-alkali stress on organic osmoregulatory substances and antioxidant enzyme systems of Helianthus tuberosus

  • Yue QIAN ,
  • Siyuan LI ,
  • Liangyi RAO
Expand
  • 1. School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
    2. Engineering Research Center of Forestry Ecological Engineering of Ministry of Education, Beijing Forestry University, Beijing 100083, China

Received date: 2023-04-24

  Revised date: 2023-06-15

  Online published: 2023-09-28

摘要

为揭示植物在盐碱胁迫下的生理响应,选择菊芋(Helianthus tuberosus)为研究对象,设置营养土组(CK)、轻度盐碱土组(LS)和中度盐碱土组(MS)3个不同处理,研究不同盐碱胁迫强度下菊芋有机渗透调节物质(可溶性糖、可溶性蛋白、脯氨酸)、丙二醛(MDA)含量以及抗氧化酶系统活性[超氧化物歧化酶(SOD)、过氧化物歧化酶(POD)、过氧化氢酶(CAT)]等生理指标的变化。研究结果表明:(1) 不同盐碱胁迫强度下菊芋叶片可溶性糖、脯氨酸和可溶性蛋白等有机渗透调节物质含量均出现增加。(2) 各组间MDA含量无显著差异,随着盐碱胁迫强度的增加,菊芋叶片SOD、POD、CAT等抗氧化酶系统活性指标均表现出上升趋势。与同期CK组相比,盐碱胁迫150 d,LS和MS组SOD活性分别显著增加22.13%和26.49%,LS和MS组CAT活性较CK组分别显著增加81.66%和92.38%(P<0.05),MS组POD活性在测定期间均显著高于同期CK组。上述研究结果表明在盐碱胁迫下,菊芋通过增加体内渗透调节物质(可溶性糖、可溶性蛋白、脯氨酸)含量和激活抗氧化酶系统(SOD、CAT、POD)来提高其抗性,具有较强耐盐碱能力。

本文引用格式

钱玥 , 李思源 , 饶良懿 . 盐碱胁迫对菊芋渗透调节及抗氧化酶系统的影响[J]. 干旱区研究, 2023 , 40(9) : 1465 -1471 . DOI: 10.13866/j.azr.2023.09.10

Abstract

To reveal the physiological response of typical crops to saline-alkali stress, we selected Jerusalem artichoke (Helianthus tuberosus) as our research object. We set up three different treatments: a complete nutrient soil group (CK), a light saline-alkali soil group (LS), and a moderate saline-alkali soil group (MS). Changes in physiological indicators, such as organic osmoregulatory substances (soluble sugar, soluble protein, and proline); malondialdehyde (MDA) content; and activities of antioxidant enzyme systems [superoxide dismutase (SOD), peroxide dismutase (POD), and catalase (CAT)] of Helianthus tuberosus were investigated. The results showed the following: (1) The content of organic osmoregulatory substances in Jerusalem artichoke leaves, including soluble sugar, proline, and soluble protein, increased under different intensities of saline-alkali stress. (2) The groups had no significant differences in MDA content. However, with increased saline-alkali stress intensity, the activity indexes of antioxidant enzyme systems, such as SOD, POD, and CAT, in Jerusalem artichoke leaves showed an upward trend. After 150 days of saline-alkali stress, the SOD activity in the LS and MS groups increased significantly by 22.13% and 26.49%, respectively, compared to the CK group. Additionally, CAT activity in the LS and MS groups increased significantly by 81.66% and 92.38%, respectively, compared to the CK group (P < 0.05). Moreover, POD activity in the MS group was significantly higher than in the CK group during the same period. The above findings demonstrate that Helianthus tuberosus can adapt to a saline-alkali environment by increasing the content of osmoregulatory substances (soluble sugar, soluble protein, and proline) and activating the antioxidant enzyme system (SOD, CAT, and POD), indicating its strong tolerance to saline-alkali stress.

参考文献

[1] Parida A K, Das A B. Salt tolerance and salinity effects on plants: A review[J]. Ecotoxicology and Environmental Safety, 2005, 60(3): 324-349.
[2] Munns R, Tester M. Mechanisms of salinity tolerance[J]. Annual Review of Plant Biology, 2008, 59(7): 651-681.
[3] 张磊, 侯云鹏, 王立春. 盐碱胁迫对植物的影响及提高植物耐盐碱性的方法[J]. 东北农业科学, 2018, 43(4): 11-16.
[3] [Zhang Lei, Hou Yunpeng, Wang Lichun. Effect of alkaline salt stress on plant and method of enhancing saline-alkali resistance[J]. Journal of Northeast Agricultural Sciences, 2018, 43(4): 11-16.]
[4] Wang W X, Vinocur B, Altman A. Plant responses to drought, salinity and extreme temperatures: Towards genetic engineering for stress tolerance[J]. Planta, 2003, 218(1): 1-14.
[5] Rozema J, Flowers T. Crops for a salinized world[J]. Science, 2008, 322(5907): 1478-1480.
[6] 邓文浩, 吕新芳. 大叶藻耐盐机理的研究进展[J]. 植物生理学报, 2018, 54(5): 718-724.
[6] [Deng Wenhao, Lv Xinfang. Advances in studies on salt-tolerance mechanism of Zostera marina[J]. Plant Physiology Journal, 2018, 54(5): 718-724.]
[7] Qi X L, Xu W G, Zhang J Z, et al. Physiological characteristics and metabolomics of transgenic wheat containing the maize C4 phosphoenolpyruvate carboxylase (PEPC) gene under high temperature stress[J]. Protoplasma, 2016, 254(2): 1017-1030.
[8] 李子英, 丛日春, 杨庆山, 等. 盐碱胁迫对柳树幼苗生长和渗透调节物质含量的影响[J]. 生态学报, 2017, 37(24): 8511-8517.
[8] [Li Ziying, Cong Richun, Yang Qingshan, et al. Effects of saline-alkali stress on growth and osmotic adjustment substances in willow seedlings[J]. Acta Ecologica Sinica, 2017, 37(24): 8511-8517.]
[9] 袁琳, 克热木·伊力, 张利权. NaCl胁迫对阿月浑子实生苗活性氧代谢与细胞膜稳定性的影响[J]. 植物生态学报, 2005, 6(43): 119-125.
[9] [Yuan Lin, Karim Ali, Zhang Liquan. Effects of NaCl stress on active oxygen metabolism and membrane stability in Pistacia vera seedlings[J]. Acta Phytoecologica Sinica, 2005, 6(43): 119-125.]
[10] 许盼云, 吴玉霞, 何天明. 植物对盐碱胁迫的适应机理研究进展[J]. 中国野生植物资源, 2020, 39(10): 41-49.
[10] [Xu Panyun, Wu Yuxia, He Tianming. Research progress on adaptation mechanism of plants to saline-alkali stress[J]. Chinese Wild Plant Resources, 2020, 39(10): 41-49.]
[11] 王宝强, 赵颖, 朱晓林, 等. 盐碱胁迫对藜麦幼苗叶片光合特性及抗氧化系统的影响[J]. 草地学报, 2021, 29(8): 1689-1696.
[11] [Wang Baoqiang, Zhao Ying, Zhu Xiaolin, et al. Effects of saline-alkali stress on photosynthesis characteristics and antioxidant system in Quinoa seedlings leaf[J]. Acta Agrestia Sinica, 2021, 29(8): 1689-1696.]
[12] 韩东洺, 张喜洋, 庞秋颖, 等. 萌芽菊芋块茎对盐碱土壤胁迫的生理响应[J]. 生态学报, 2017, 37(4): 1244-1251.
[12] [Han Dongming, Zhang Xiyang, Pang Qiuying, et al. Physiological response of sprouting Jerusalem artichoke tubers to saline-alkali stress[J]. Acta Ecologica Sinica, 2017, 37(4): 1244-1251.]
[13] 高凯, 高阳, 朱铁霞, 等. 盐碱胁迫对菊芋块茎萌发及幼苗生长的影响[J]. 草业科学, 2018, 35(12): 2915-2923.
[13] [Gao Kai, Gao Yang, Zhu Tiexia, et al. Effect of saline-alkali stress on tuber germination and seedling growth of Helianthus tuberosus[J]. Pratacultural Science, 2018, 35(12): 2915-2923.]
[14] 张蜀秋, 韩玉珍, 李云. 植物生理学实验技术教程[M]. 北京: 科学出版社, 2011.
[14] [Zhang Shuqiu, Han Yuzhen, Li Yun. Plant Physiology Experimental Technology Course[M]. Beijing: Science Press, 2011.]
[15] 李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000.
[15] [Li Hesheng. Principles and Techniques of Plant Physiology and Biochemistry Experiments[M]. Beijing: Higher Education Press, 2000.]
[16] 孙聪聪, 赵海燕, 郑彩霞. NaCl胁迫对银杏幼树渗透调节物质及脯氨酸代谢的影响[J]. 植物生理学报, 2017, 53(3): 470-476.
[16] [Sun Congcong, Zhao Haiyan, Zheng Caixia. Effects of NaCl stress on osmolyte and proline metabolism in Ginkgo biloba seedling[J]. Plant Physiology Journal, 2017, 53(3): 470-476.]
[17] 张永锋, 梁正伟, 隋丽, 等. 盐碱胁迫对苗期紫花苜蓿生理特性的影响[J]. 草业学报, 2009, 18(4): 230-235.
[17] [Zhang Yongfeng, Liang Zhengwei, Sui Li, et al. Effect on physiological characteristic of Medicago sativa under saline-alkali stress at seeding stage[J]. Acta Prataculturae Sinica, 2009, 18(4): 230-235.]
[18] 赵卓雅, 袁琳芳, 汪文潇, 等. 盐碱胁迫对榉树幼苗渗透调节的影响[J]. 安徽农学通报, 2020, 26(1): 16-18.
[18] [Zhao Zhuoya, Yuan Linfang, Wang Wenxiao, et al. Effects of saline-alkali stress on osmotic adjustment of Zelkova schneideriana seedlings[J]. Anhui Agricultural Science Bulletin, 2020, 26(1): 16-18.]
[19] Amiri A, Baninasab B, Ghobadi C, et al. Zinc soil application enhances photosynthetic capacity and antioxidant enzyme activities in almond seedlings affected by salinity stress[J]. Photosynthetica, 2016, 54(2): 267-274.
[20] 梁培鑫, 唐榕, 郭睿, 等. 混合盐碱胁迫对油莎豆生长及生理性状的影响[J]. 干旱区资源与环境, 2022, 36(10): 185-192.
[20] [Liang Peixin, Tang Rong, Guo Rui, et al. Effect of mixed salt-alkaline stress on growth and physiological characteristics in Cyperus esculentus L.[J]. Journal of Arid Land Resources and Environment, 2022, 36(10): 185-192.]
[21] Hazman M, Hause B, Eiche E, et al. Increased tolerance to salt stress in OPDA-deficient rice Allene Oxide Cyclase mutants is linked to an increased ROS-scavenging activity[J]. Journal of Experimental Botany, 2015, 66(11): 3339-3352.
[22] 徐宁, 曹娜, 王闯, 等. NaCl胁迫对野生和栽培品种高粱种子萌发和幼苗生理特性的影响[J]. 江苏农业科学, 2018, 46(18): 55-57.
[22] [Xu Ning, Cao Na, Wang Chuang, et al. Effects of NaCl stress on seed germination and seedling physiological characteristics of wild and cultivar sorghum[J]. Jiangsu Agricultural Sciences, 2018, 46(18): 55-57.]
[23] 李玉梅, 郭修武, 代汉萍. 牛叠肚幼苗对盐碱胁迫的生理响应及其耐盐阈值[J]. 西北植物学报, 2014, 34(6): 1213-1219.
[23] [Li Yumei, Guo Xiuwu, Dai Hanping. Physiological response of Rubus crataegifolius bges. seedlings to saline stress and its salt tolerance threshold[J]. Acta Botanica Boreali-Occidentalia Sinica, 2014, 34(6): 1213-1219.]
[24] 王鑫, 朱悦, 刘滨硕, 等. 盐碱胁迫下羊草抗氧化酶活性的变化[J]. 江苏农业科学, 2015, 43(5): 209-211.
[24] [Wang Xin, Zhu Yue, Liu Binshuo, et al. Changes in antioxidant enzyme activity of Leymus chinensis under salt alkali stress[J]. Jiangsu Agricultural Sciences, 2015, 43(5): 209-211.]
[25] 李波, 林浩. 紫花苜蓿对苏打盐碱胁迫的生理响应[J]. 黑龙江畜牧兽医, 2018, 61(1): 168-170.
[25] [Li Bo, Lin Hao. Physiological response of alfalfa to soda saline alkali stress[J]. Heilongjiang Animal Science and Veterinary Medicine, 2018, 61(1): 168-170.]
[26] 李海燕, 邵金彩, 王静, 等. NaCl胁迫对5年生蜡梅生长及生理特性的影响[J]. 东北林业大学学报, 2021, 49(3): 31-38.
[26] [Li Haiyan, Shao Jincai, Wang Jing, et al. Effects of NaCl stress on the growth and physiological characteristics of five-year Chimonanthus praecox[J]. Journal of Northeast Forestry University, 2021, 49(3): 31-38.]
[27] Meloni D A, Oliva M A, Martinez C A, et al. Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress[J]. Environmental and Experimental Botany, 2003, 49(1): 69-76.
[28] 田小磊, 吴晓岚, 李云, 等. 盐胁迫条件下 γ-氨基丁酸对玉米幼苗SOD、POD及CAT活性的影响[J]. 实验生物学报, 2005, 38(1): 75-79.
[28] [Tian Xiaolei, Wu Xiaolan, Li Yun, et al. The effect of gamma-aminobutyric acid in superoxide dismutase, peroxidase and catalase activity response to salt stress in maize seedling[J]. Journal of Molecular Cell Biology, 2005, 38(1): 75-79.]
文章导航

/