水土资源

黑河中游正义峡径流变化趋势及归因分析

  • 胡广录 ,
  • 陶虎 ,
  • 焦娇 ,
  • 白元儒 ,
  • 陈海志 ,
  • 麻进
展开
  • 1.兰州交通大学环境与市政工程学院,甘肃 兰州 730070
    2.甘肃省黄河水环境重点实验室,甘肃 兰州 730070
胡广录(1966-),男,教授,博士,研究方向为水文学及水资源. E-mail: hgl0814@163.com

收稿日期: 2023-04-19

  修回日期: 2023-07-17

  网络出版日期: 2023-09-28

基金资助

国家自然科学基金项目(41867074);国家自然科学基金项目(41561102);甘肃省水利厅水利科学试验研究技术推广项目(甘水建管发[2021]71号)

Runoff trend and attribution analysis of the Zhengyi Gorge in the middle reaches of the Heihe River

  • Guanglu HU ,
  • Hu TAO ,
  • Jiao JIAO ,
  • Yuanru BAI ,
  • Haizhi CHEN ,
  • Jin MA
Expand
  • 1. School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, Gansu, China
    2. Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou 730070, Gansu, China

Received date: 2023-04-19

  Revised date: 2023-07-17

  Online published: 2023-09-28

摘要

以黑河中游正义峡水文站的实测径流量数据为基础,采用线性回归法、Mann-Kendall突变检验法、滑动t检验法、Pettitt检验法和累积距平法分析了正义峡水文站1970―2020年径流序列的变化趋势和突变年份,并利用基于Budyko假设的水热耦合平衡方程,对正义峡径流量变化趋势进行了归因分析。结果表明:(1) 研究期内正义峡径流量波动变化,丰枯交替,但整体呈现增加趋势,2004年径流发生突变,突变后的年平均径流量增加了3.08×108 m3,增加率为32.7%。(2) 突变后的2005―2020年,正义峡径流量对降水、潜在蒸发和下垫面参数的弹性系数分别为1.40、-0.40、-1.57,且各因子对径流的贡献率分别为42.73%、-12.52%、69.79%,表明径流量对下垫面变化最为敏感,气候因子中降水对径流的影响大于潜在蒸发。(3) 在一定的区域气候条件下,植被覆盖、土地利用、流域调水等人类活动引起的中游下垫面变化是正义峡径流量变化的主要原因。研究结果可为流域管理部门制定水资源合理分配及调用方案提供科学依据。

本文引用格式

胡广录 , 陶虎 , 焦娇 , 白元儒 , 陈海志 , 麻进 . 黑河中游正义峡径流变化趋势及归因分析[J]. 干旱区研究, 2023 , 40(9) : 1414 -1424 . DOI: 10.13866/j.azr.2023.09.05

Abstract

This study utilized measured runoff data from the Zhengyi Gorge hydrological station in the middle reaches of the Heihe River to analyze the trend and mutation years of the runoff sequence from 1970 to 2020. Various methods, including linear regression, the Mann-Kendall mutation test, the sliding T mutation test, the Pettitt test, and cumulative offset verification, were employed for the analysis. Additionally, an attribution analysis of the runoff changes at the Zhengyi Gorge hydrological station was conducted using the Budyko water-energy coupled balance equation. The results indicate the following: (1) Over the study period, the runoff at Zhengyi Gorge showed fluctuations, alternating between periods of abundance and contraction but showed an overall increasing trend. The runoff experienced a mutation in 2004, resulting in a 3.08 × 108 m3 increase in average annual runoff volume, representing a growth rate of 32.7%. (2) In the period after the mutation (2005-2020), the elastic coefficients of runoff in response to precipitation, potential evaporation, and underlying surface parameters were 1.40, -0.40, and -1.57, respectively. The contribution rates of each factor to runoff were 42.73%, -12.52%, and 69.79%, respectively, indicating that runoff is most sensitive to underlying surface changes and that precipitation has a more significant impact on runoff than potential evaporation among climate factors. (3) Under certain regional climatic conditions, the changes in the underlying surface of the middle reaches caused by human activities, such as vegetation cover, land use, and watershed water transfer, are the main reasons for the changes in runoff at Zhengyi Gorge. The research findings can provide a scientific basis for river basin management departments to formulate water resource allocation and utilization plans.

参考文献

[1] Oki T, Kanae S. Global hydrological cycles and world water resources[J]. Science, 2006, 313(5790): 1068-1072.
[2] 宋晓猛, 张建云, 占车生, 等. 气候变化和人类活动对水文循环影响研究进展[J]. 水利学报, 2013, 44(7): 779-790.
[2] [Song Xiaomeng, Zhang Jianyun, Zhan Chesheng, et al. Research progress on the impact of climate change and human activities on the hydrological cycle[J]. Journal of Hydraulic Engineering, 2013, 44(7): 779-790.]
[3] 张强, 胡隐樵, 曹晓彦, 等. 论西北干旱气候的若干问题[J]. 中国沙漠, 2000, 20(4): 357-362.
[3] [Zhang Qiang, Hu Yinqiao, Cao Xiaoyan, et al. On some problems of arid climate system of Northwest China[J]. Journal of Desert Research, 2000, 20(4): 357-362.]
[4] 王玉洁, 秦大河. 气候变化及人类活动对西北干旱区水资源影响研究综述[J]. 气候变化研究进展, 2017, 13(5): 483-493.
[4] [Wang Yujie, Qin Dahe. Influence of climate change and human activity on water resources in arid region of Northwest China: An overview[J]. Climate Change Research, 2017, 13(5): 483-493.]
[5] 吴景全, 吴铭婉, 臧传富. 西北诸河流域土地利用变化及土地生态安全评估[J]. 干旱区地理, 2021, 44(5): 1471-1482.
[5] [Wu Jingquan, Wu Mingwan, Land Chuanfu. Land use change and land ecological security assessment in the river basins of Northwestern China[J]. Arid Land Geography, 2021, 44(5): 1471-1482.]
[6] 黄鑫, 程文仕, 李晓丹, 等. 干旱内陆河流域土地利用转型的生态环境效应变化特征及其驱动因素探测[J]. 水土保持研究, 2023, 30(2): 324-332.
[6] [Huang Xin, Cheng Wenshi, Li Xiaodan, et al. Recognition on the changes and driving factors of eco-environmental effect of land use transformation in arid inland river basin[J]. Research of Soil and Water Conservation, 2023, 30(2): 324-332.]
[7] 王晓杰, 刘海隆, 包安明. 气候变化对玛纳斯河的径流量影响预测模拟分析[J]. 冰川冻土, 2012, 34(5): 1220-1228.
[7] [Wang Xiaojie, Liu Hailong, Bao Anming. A simulation analysis of the impact of climate change on runoff in the Manas River[J]. Journal of Glaciology and Geocryology, 2012, 34(5): 1220-1228.]
[8] 肖森元, 苏军, 杨广, 等. 气候变化和人类活动对玛纳斯河流域径流及干旱的影响[J]. 人民珠江, 2022, 43(7): 21-28.
[8] [Xiao Senyuan, Su Jun, Yang Guang, et al. Impact of climate change and human activities on runoff and drought in Manas River Basin[J]. Pearl River, 2022, 43(7): 21-28.]
[9] 孙从建, 陈伟, 王诗语. 气候变化下的塔里木盆地西南部内陆河流域径流组分特征分析[J]. 干旱区研究, 2022, 39(1): 113-122.
[9] [Sun Congjian, Chen Wei, Wang Shiyu. Stream component characteristics of the inland river basin of the Tarim Basin under regional climate change[J]. Arid Zone Research, 2022, 39(1): 113-122.]
[10] 张晓晓, 张钰, 徐浩杰, 等. 河西走廊三大内陆河流域出山径流变化特征及其影响因素分析[J]. 干旱区资源与环境, 2014, 28(4): 66-72.
[10] [Zhang Xiaoxiao, Zhang Yu, Xu Haojie, et al. Mountainous runoff change in three inland river basin in Hexi Corridor and its influencing factors[J]. Journal of Arid Land Resources and Environment, 2014, 28(4): 66-72.]
[11] 张彧瑞. 河西内陆河流域径流变化特征及对气候变化和人类活动的响应[D]. 兰州: 兰州大学, 2013.
[11] [Zhang Yurui. The Characteristic of Runoff and its Response on Climate Change and Human Activities In inland Basins of Hexi Region[D]. Lanzhou: Lanzhou University, 2013.]
[12] 李秋菊, 李占玲, 王杰. 黑河流域上游径流变化及其归因分析[J]. 南水北调与水利科技, 2019, 17(3): 31-39.
[12] [Li Qiuju, Li Zhanling, Wang Jie, et al. Changes of runoff in the upper reaches of the Heihe River Basin and its attribution analysis[J]. South-to-North Water Transfer and Water Conservancy Technology, 2019, 17(3): 31-39.]
[13] 李芳, 邹松兵, 陆志翔, 等. 气候变暖背景下黄河源区白河和黑河流域径流变化归因分析[J]. 兰州大学学报(自然科学版), 2020, 56(1): 56-64.
[13] [Li Fang, Zou Songbing, Lu Zhixiang, et al. Attribution analysis of runoff changes in the Baihe and Heihe River Basins in the source area of the Yellow River under the background of climate warming[J]. Journal of Lanzhou University (Natural Science Edition), 2020, 56(1): 56-64.]
[14] Li Z L, Li W, Li Z J, et al. Responses of runoff and its extremes to climate change in the upper reaches of the Heihe River Basin, China[J]. Atmosphere, 2023, 14(3): 539.
[15] 吴凯, 李强坤, 殷会娟, 等. 黑河“97”分水方案下黑河流域径流演变新事实与调水成效分析[C]// 中国水利学会2020学术年会论文集第三分册, 2020: 89-95.
[15] [Wu Kai, Li Qiangkun, Yin Huijuan, et al. New facts of runoff evolution and analysis of water transfer effectiveness in Heihe River Basin under the “97” water dividing scheme of Heihe River[C]// The Third Volume of the Proceedings of the 2020 Academic Annual Meeting of the Chinese Hydraulic Engineering Society, 2020: 89-95.]
[16] 张妍, 郭萍, 张帆. 黑河中游农业水资源多目标优化配置[J]. 中国农业大学学报, 2019, 24(5): 185-192.
[16] [Zhang Yan, Guo Ping, Zhang Yan. Study on multi-objective optimization allocation of agricultural water resources in the middle reaches of Heihe River[J]. Journal of China Agricultural University, 2019, 24(5): 185-192.]
[17] 蒋小芳, 段翰晨, 廖杰, 等. 基于多模型的黑河中游甘临高地区土地利用情景模拟[J]. 农业机械学报, 2022, 53(9): 178-188.
[17] [Jiang Xiaofang, Duan Hanchen, Liao Jie, et al. Multi-model-based simulation of different land use scenarios in Gan-Lin-Gao area in middle reaches of Heihe River[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(9): 178-188.]
[18] 杜伟宏. 塔里木河干流水土资源变化与生态恢复研究[D]. 西安: 长安大学, 2020.
[18] [Du Weihong. Study on Changes of Soil and Water Resources and Ecological Recovery in the Main Stream of Tarim River[D]. Xi’an: Chang’an University, 2020.]
[19] 耿文杰. 基于“97”分水方案和“三条红线”的黑河中游水资源配置研究[D]. 西安:西北大学, 2021.
[19] [Geng Wenjie. The allocation of water resources in the midstream of Heihe River for the“97 water diversion scheme”and the“Three Red Lines”[D]. Xi’an: Northwest University, 2021.]
[20] 梁鹏飞, 辛惠娟, 李宗省, 等. 祁连山黑河径流变化特征及影响因素研究[J]. 干旱区地理, 2022, 45(5): 1-14.
[20] [Liang Pengfei, Xin Huijuan, Li Zongsheng, et al. Study on the characteristics and influencing factors of runoff changes of Heihe River in Qilian Mountains[J]. Arid Land Geography, 2022, 45(5): 1-14.]
[21] 陈丽丽, 莫淑红, 巩瑶. 基于Budyko弹性系数法的佳芦河流域径流变化归因识别[J]. 水资源与水工程学报, 2021, 32(1): 110-116.
[21] [Chen Lili, Mo Shuhong, Gong Yao. Attribution identification of runoff changes in Jialu River Basin based on Budyko elastic coefficient method[J]. Journal of Water Resources and Water Engineering, 2021, 32(1): 110-116.]
[22] 杨林, 赵广举, 穆兴民, 等. 基于Budyko假设的洮河与大夏河径流变化归因识别[J]. 生态学报, 2021, 41(21): 8421-8429.
[22] [Yang Lin, Zhao Guangju, Mu Xingmin, et al. Attribution identification of runoff changes in Tao River and Daxia River based on Budyko hypothesis[J]. Acta Ecologica Sinica, 2021, 41(21): 8421-8429.]
[23] 苗正伟, 路梅, 丁志宏. 基于时变Budyko模型的滹沱河上游径流变化归因分析[J]. 长江科学院院报, 2022, 39(7): 29-35.
[23] [Miao Zhengwei, Lu Mei, Ding Zhihong. Cause analysis of runoff change in the upper reaches of Hutuo River based on time-varying Budyko-type equation[J]. Journal of Changjiang River Scientific Research Institute, 2022, 39(7): 29-35.]
[24] 司源, 尹冬勤, 侯胜林, 等. 气候变化及人类活动对黑河流域径流演变影响分析[J]. 应用基础与工程科学学报, 2018, 26(6): 1177-1188.
[24] [Si Yuan, Yin Dongqin, Hou Shenglin, et al. Analysis of the impact of climate change and human activities on runoff evolution in the Heihe River Basin[J]. Journal of Applied Basic and Engineering Sciences, 2018, 26(6): 1177-1188.]
[25] 闫宇会, 薛宝林, 张路方, 等. 基于MOD16产品的黑河流域蒸散量时空分布特征[J]. 节水灌溉, 2019, 44(9): 85-92.
[25] [Yan Yuhui, Xue Baolin, Zhang Lufang, et al. Spatial-temporal distribution characteristics of evapotranspiration in Heihe River Basin based on MOD16 products[J]. Water Saving Irrigation, 2019, 44(9): 85-92.]
[26] 余加男, 李占玲, 冯雅茹. 基于Budyko理论的黑河流域中游地区实际蒸散发估算及其变化归因分析[J]. 节水灌溉, 2022, 47(2): 54-58.
[26] [Yu Jianan, Li Zhanling, Feng Yaru. Estimation of actual evapotranspiration in the middle reaches of the Heihe River Basin based on Budyko theory and attribution analysis of its changes[J]. Water Saving Irrigation, 2022, 47(2): 54-58.]
[27] 邱玲花, 彭定志, 徐宗学, 等. 气候变化和人类活动对黑河中游流域径流的影响分析[J]. 中国农村水利水电, 2015, 40(9): 17-21.
[27] [Qiu Linghua, Peng Dingzhi, Xu Zongxue, et al. Analysis of the impact of climate change and human activities on runoff in the middle reaches of the Heihe River[J]. China Rural Water and Hydropower, 2015, 40(9): 17-21.]
[28] 祁晓凡, 李文鹏, 崔虎群, 等. 黑河流域中游盆地地表水与地下水转化机制研究[J]. 水文地质工程地质, 2022, 49(3): 29-43.
[28] [Qi Xiaofan, Li Wenpeng, Cui Huqun, et al. Study on surface water and groundwater transformation mechanism in the middle reaches of the Heihe River Basin[J]. Hydrogeology & Engineering Geology, 2022, 49(3): 29-43.]
[29] 何旭强, 张勃, 孙力炜, 等. 气候变化和人类活动对黑河上中游径流量变化的贡献率[J]. 生态学杂志, 2012, 31(11): 2884-2890.
[29] [He Xuqiang, Zhang Bo, Sun Liwei, et al. Contribution rates of climate change and human activity on the runoff in upper and middle reaches of Heihe River Basin[J]. Chinese Journal of Ecology, 2012, 31(11): 2884-2890.]
[30] 潘燕辉, 张辉, 马金珠. 气候变化和人类活动对黑河水资源的影响[J]. 人民黄河, 2012, 34(5): 55-60.
[30] [Pan Yanhui, Zhang Hui, Ma Jinzhu. The impact of climate change and human activities on the water resources of the Heihe River[J]. Yellow River, 2012, 34(5): 55-60.]
[31] 黑河流域管理局. 见证黑河[M]. 郑州: 黄河水利出版社, 2019.
[31] [ Heihe River Basin Bureau. Witness the Heihe River[M]. Zhengzhou: The Yellow River Water Conservancy Press, 2019.]
[32] 廉耀康, 楚楚, 杜得彦, 等. 黑河正义峡基流变化分析[C] //2022(第十届)中国水生态大会论文集, 2022: 394-401.
[32] [Lian Yaokang, Chu Chu, Du Deyan, et al. Analysis of base flow change in Heihe Zhengyi Gorge[C]//Proceedings of the 2022 (10th) China Water Ecology Conference, 2022: 394-401.]
文章导航

/