天气与气候

银川平原夏半年不同等级降雨水汽输送机制

  • 王娜娜 ,
  • 韩磊 ,
  • 柳利利 ,
  • 彭苓 ,
  • 周鹏 ,
  • 马云蕾 ,
  • 马军
展开
  • 1.宁夏大学地理科学与规划学院,宁夏 银川 750021
    2.中阿旱区特色资源与环境治理国际合作联合实验室,宁夏 银川 750021
    3.宁夏旱区资源评价与环境调控重点实验室,宁夏 银川 750021
    4.宁夏大学农学院,宁夏 银川 750021
王娜娜(1998-),女,硕士研究生,主要研究方向为同位素水文学. E-mail: wangna5904@163.com

收稿日期: 2023-03-14

  修回日期: 2023-04-30

  网络出版日期: 2023-09-28

基金资助

国家自然科学基金项目(31760236);宁夏自然科学基金项目(2023AAC03056)

Water vapor transport mechanisms for varied precipitation grades during the summer half-year in Yinchuan Plain

  • Nana WANG ,
  • Lei HAN ,
  • Lili LIU ,
  • Ling PENG ,
  • Peng ZHOU ,
  • Yunlei Ma ,
  • Jun Ma
Expand
  • 1. School of Geography and Planning, Ningxia University, Yinchuan 750021, Ningxia, China
    2. China-Arab Joint International Research Laboratory for Featured Resources and Environmental Governance in Arid Regions, Yinchuan 750021, Ningxia, China
    3. Key Laboratory of Resource Evaluation and Environmental Regulation in Arid Region of Ningxia, Yinchuan 750021, Ningxia, China
    4. College of Agriculture, Ningxia University, Yinchuan 750021, Ningxia, China

Received date: 2023-03-14

  Revised date: 2023-04-30

  Online published: 2023-09-28

摘要

全球气候变暖加速了区域水循环,改变了水汽的传输路径,了解不同等级降雨稳定同位素特征及水汽来源为水资源的利用及旱涝灾害的防治提供依据。基于2018—2020年夏半年(5—10月)采集的银川平原降雨样品,研究不同等级降雨中氢氧稳定同位素的变化特征及其二次蒸发效应,并利用后向轨迹模型及水汽通量等方法分析降雨的水汽来源及潜在蒸发源区。结果表明:银川平原夏半年不同等级降雨稳定同位素随着降雨等级的增加而偏负,小雨氘盈余(d-excess)值偏负而中雨和大雨偏正,大气降水线斜率和截距随着雨量级的增加呈现出递减的规律。二次蒸发作用的强弱随气温升高而增大,随降雨量、相对湿度和雨滴直径增大而减弱。西风水汽为银川平原夏半年降雨的主控水汽,同时小雨、中雨、大雨还分别受到陆地蒸发水汽、大西洋水汽及太平洋水汽的影响。潜在蒸发源区对小雨影响较大,主要位于研究区周边及北部、南部和东南部地区;中雨潜在蒸发源区主要分布在研究区周边地区及其西北部和东南部;大雨主要分布在研究区周边及东南部地区。

本文引用格式

王娜娜 , 韩磊 , 柳利利 , 彭苓 , 周鹏 , 马云蕾 , 马军 . 银川平原夏半年不同等级降雨水汽输送机制[J]. 干旱区研究, 2023 , 40(9) : 1404 -1413 . DOI: 10.13866/j.azr.2023.09.04

Abstract

Global warming intensifies regional water cycles and alters water vapor transport routes. Investigating stable isotope traits in diverse precipitation grades and identifying water vapor origins can offer insights for efficient water resource utilization and drought-flood management. By analyzing precipitation samples from Yinchuan Plain in the May-October summer half-years of 2018-2020, the hydrogen and oxygen isotope fluctuations across precipitation levels and their secondary evaporation effects were estimated in this study. Backward trajectory modeling and water vapor flux methods were applied to determine vapor sources and potential evaporation areas. The findings revealed that the stable isotope signature in Yinchuan Plain during the summer half-year decreased with increased rainfall levels; light rain exhibited negative d-excess values, whereas moderate and heavy rains showed positive values. The slope and intercept of the regional atmospheric precipitation line diminished as rainfall magnitude increased. Secondary evaporation intensified with higher air temperature, but decreased with increased precipitation, air relative humidity, and raindrop diameter. Distinct water vapor origins existed across precipitation levels: westerly vapor dominated light rain, whereas moderate and heavy rains originated not only from westerly vapor but also from high latitude land evaporation vapor and southeast ocean vapor, respectively. Potential evaporative vapor source areas predominantly influenced light and moderate rainfall, encompassing the study area’s vicinity as well as northwest and southeast regions. Moderate rainfall events were largely observed in the study area’s vicinity, as well as northwest and southeast regions, whereas heavy rainfall clustered around the study area and the southeastern region.

参考文献

[1] Guo X Y, Feng Q, Si J H, et al. Considerable influences of recycled moistures and summer monsoons to local precipitation on the northeastern Tibetan Plateau[J]. Journal of Hydrology, 2022, 605(60): 127343.
[2] 徐利岗, 周宏飞, 杜历, 等. 1951—2008年中国西北干旱区降水时空变化及其趋势[J]. 中国沙漠, 2015, 35(3): 724-734.
[2] [Xu Ligang, Zhou Hongfei, Du Li, et al. Spatio-temporal change and trend of precipitation in Northwest China during 1951-2008[J]. Journal of Desert Research, 2015, 35(3): 724-734.]
[3] Cai M Y, Wang L X, Parkes S D, et al. Stable water isotope and surface heat flux simulation using ISOLSM: Evaluation against in-situ measurements[J]. Journal of Hydrology, 2015, 523(53): 67-78.
[4] Dansgaard W. Stable isotopes in precipitation[J]. Tellus, 1964, 16(4): 436-468.
[5] 袁瑞丰, 贾文雄, 李宗省, 等. 石羊河流域降水稳定同位素变化的区域差异[J]. 中国环境科学, 2020, 40(11): 4945-4956.
[5] [Yuan Ruifeng, Jia Wenxiong, Li Zongsheng, et al. Precipitation stable isotope regional difference in Shiyang River basin[J]. China Environmental Science, 2020, 40(11): 4945-4956.]
[6] Tao S Y, Zhang X, Pan G Y, et al. Moisture source identification based on the seasonal isotope variation of precipitation in the Poyang Lake Wetland, China[J]. Journal of Hydrology, 2021, 37(59): 100892.
[7] 杨晓新. 水体稳定同位素在青藏高原大气环流研究中的应用[J]. 地球科学进展, 2022, 37(1): 87-98.
[7] [Yang Xiaoxin. Water stable isotopes and their applications to the study of atmospheric circulations on the Tibetan Plateau[J]. Advances in Earth Science, 2022, 37(1): 87-98.]
[8] 田媛媛, 张明军, 张宇, 等. 对流和层状降水比例的变化对兰州降水稳定同位素的影响[J]. 地理科学, 2023, 43(2): 370-378.
[8] [Tian Yuanyuan, Zhang Mingjun, Zhang Yu, et al. Influence of the variation of the proportion of convective and stratiform precipitation on stable isotopes observed in Lanzhou[J]. Scientia Geographica Sinica, 2023, 43(2): 370-378.]
[9] 曾康康, 杨余辉, 胡义成, 等. 喀什河流域降水同位素特征及水汽来源分析[J]. 干旱区研究, 2021, 38(5): 1263-1273.
[9] [Zeng Kangkang, Yang Yuhui, Hu Yicheng, et al. Isotopic characteristics and water vapor sources of precipitation in the Kashi Basin[J]. Arid Zone Research, 2021, 38(5): 1263-1273.]
[10] Li X, Kawamura R, Sugimoto A, et al. Isotopic composition and moisture sources of precipitation in midlatitude regions characterized by extratropical cyclones’ route[J]. Journal of Hydrology, 2022, 612(60): 128047.
[11] 曾帝, 吴锦奎, 李洪源, 等. 西北干旱区降水中氢氧同位素研究进展[J]. 干旱区研究, 2020, 37(4): 857-869.
[11] [Zeng Di, Wu Jinkui, Li Hongyuan, et al. Hydrogen and oxygen isotopes in precipitation in the arid regions of Northwest China: A review[J]. Arid Zone Research, 2020, 37(4): 857-869.]
[12] 韩婷婷, 张明军, 王圣杰, 等. 兰州市两场典型降水事件稳定同位素特征及其水汽来源[J]. 环境科学, 2020, 41(9): 3993-4002.
[12] [Han Tingting, Zhang Mingjun, Wang Shengjie, et al. Characteristics of stable isotopes and moisture source of two typical precipitation events in Lanzhou City[J]. Environmental Science, 2020, 41(9): 3993-4002.]
[13] 郭鑫, 李文宝, 杜蕾, 等. 内蒙古夏季大气降水同位素组成特征及影响因素[J]. 中国环境科学, 2022, 42(3): 1088-1096.
[13] [Guo Xin, Li Wenbao, Du Lei, et al. Characteristics and influence factors for the hydrogen and oxygen isotopic compositions of precipitation in Inner Mongolia[J]. China Environmental Science, 2022, 42(3): 1088-1096.]
[14] Zeng L Y, Yang Y, Wang H L, et al. Intensified modulation of winter aerosol pollution in China by El Ni?o with short duration[J]. Atmospheric Chemistry and Physics, 2021, 21(13): 10745-10761.
[15] 李雅娟, 张宇, 田颖琳, 等. 多源数据驱动的黄河未来水沙变化趋势研究[J]. 水力发电学报, 2021, 40(5): 99-109.
[15] [Li Yajuan, Zhang Yu, Tian Yinglin, et al. Study on future trends of water and sediment changes in Yellow River based on multisource data[J]. Journal of Hydroelectric Engineering, 2021, 40(5): 99-109.]
[16] 郭小燕, 冯起, 李宗省, 等. 敦煌盆地降水稳定同位素特征及水汽来源[J]. 中国沙漠, 2015, 35(3): 715-723.
[16] [Guo Xiaoyan, Feng Qi, Li Zongxing, et al. Variation of stable isotopes and moisture source in precipitation at the Dunhuang Basin in Northwest China[J], Journal of Desert Research, 2015, 35(3): 715-723.]
[17] 韩磊, 何俊, 齐拓野, 等. 宁夏河东沙区侧柏冠层气孔导度对环境因子的响应及其模拟[J]. 生态学杂志, 2018, 37(9): 2862-2868.
[17] [Han Lei, He Jun, Qi Tuoye, et al. Responses and modeling of canopy stomatal conductance of Platycladus orientalis to environmental factors in Hedong sandy land, Ningxia[J]. Chinese Journal of Ecology, 2018, 37(9): 2862-2868.]
[18] 李菲, 张明军, 李小飞, 等. 1962-2011年宁夏极端降水的时空演变研究[J]. 自然灾害学报, 2013, 22(5): 171-180.
[18] [Li Fei, Zhang Mingjun, Li Xiaofei, et al. Research on spatiotemporal evolution of extreme precipitation in Ningxia during 1962-2011[J]. Journal of Natural Disasters, 2013, 22(5): 171-180.]
[19] 周顺武, 宋瑶, 李耀辉, 等. 西北地区东部夏季不同等级降水的空间分布特征及其在旱涝年分布的差异[J]. 干旱区地理, 2016, 39(6): 1162-1171.
[19] [Zhou Shunwu, Song Yao, Li Yaohui, et al. Spatial distribution of summer graded precipitation and its difference in drought and flood years over the east of Northwest China[J]. Arid Land Geography, 2016, 39(6): 1162-1171.]
[20] 刘文茹, 彭新华, 沈业杰, 等. 激光同位素分析仪测定液态水的氢氧同位素及其光谱污染修正[J]. 生态学杂志, 2013, 32(5): 1181-1186.
[20] [Liu Wenru, Peng Xinhua, Shen Yejie, et al. Measurements of hydrogen and oxygen isotopes in liquid water by isotope ratio infrared spectroscopy(IRIS) and their spectral contamination corrections[J]. Chinese Journal of Ecology, 2013, 32(5): 1181-1186.]
[21] Gat J R. Atmospheric water balance-the isotopic perspective[J]. Hydrological Processes, 2015, 14(8): 1357-1369.
[22] 许彬, 熊秋芬, 张玉婷. 一次热带风暴背景下南昌暴雨的水汽来源及输送特征[J]. 气象, 2019, 45(10): 1392-1401.
[22] [Xu Bin, Xiong Qiufen, Zhang Yuting. Analysis of moisture source and transport pathways of a rainstorm with tropical cyclone in Nanchang[J]. Meteorological Monthly, 2019, 45(10): 1392-1401.]
[23] 李汉林, 何清, 刘新春, 等. 帕米尔高原东部PM10输送路径及潜在源分析[J]. 中国环境科学, 2020, 40(11): 4660-4668.
[23] [Li Hanlin, He Qing, Liu Xinchun, et al. Analysis of transport pathways and potential source regions of PM10 in the eastern Pamirs[J]. China Environmental Science, 2020, 40(11): 4660-4668.]
[24] Zeng Y, Hopke P K. A study of the sources of acid precipitation in Ontario, Canada[J]. Atmospheric Environment, 1989, 23(4): 1499-1509.
[25] 郑淑蕙, 侯发高, 倪葆龄. 我国大气降水的氢氧稳定同位素研究[J]. 科学通报, 1983, 34(13): 801-806.
[25] [Zheng Shuhui, Hou Fagao, Ni Baoling. The studies of hydrogen and oxygen stable isotopes in atmospheric precipitation in China[J]. Chinese Science Bulletin, 1983, 34(13): 801-806.]
[26] 周思捷, 孙从建, 陈伟, 等. 黄土高原东部夏半年降水稳定同位素特征及水汽来源分析[J]. 地理学报, 2022, 77(7): 1745-1761.
[26] [Zhou Sijie, Sun Congjian, Chen Wei, et al. Precipitation isotope characteristics and water vapor sources in summer in eastern Loess Plateau[J]. Acta Geographica Sinica, 2022, 77(7): 1745-1761.]
[27] Xia C C, Liu G D, Mei J, et al. Characteristics of hydrogen and oxygen stable isotopes in precipitation and the environmental controls in tropical monsoon climatic zone[J]. International Journal of Hydrogen Energy, 2019, 44(11): 5417-5427.
[28] 柳鉴容, 宋献方, 袁国富, 等. 西北地区大气降水δ18O的特征及水汽来源[J]. 地理学报, 2008, 75(1):12-22.
[28] [Liu Jianrong, Song Xianfang, Yuan Guofu, et al. Characteristics of δ18O in precipitation over Northwest China and its water vapor source[J]. Acta Geographica Sinica, 2008, 75(1): 12-22. ]
[29] Wu X X, Chen F L, Liu X Y, et al. The significance of hydrogen and oxygen stable isotopes in the water vapor source in Dingxi Area[J]. Water, 2021, 13(17): 2374.
[30] 李广, 章新平, 许有鹏, 等. 滇南蒙自地区降水稳定同位素特征及其水汽来源[J]. 环境科学, 2016, 37(4): 1313-1320.
[30] [Li Guang, Zhang Xinping, Xu Youpeng, et al. Characteristics of stable isotopes in precipitation and their moisture sources in Mengzi region, Southern Yunnan[J]. Environmental Science, 2016, 37(4): 1313-1320.]
[31] 刘洁遥, 张福平, 冯起, 等. 西北地区降水稳定同位素的云下二次蒸发效应[J]. 应用生态学报, 2018, 29(5): 1479-1488.
[31] [Liu Jieyao, Zhang Fuping, Feng Qi, et al. Influence of below-cloud secondary evaporation on stable isotope compositition in precipitation in Northwest China[J]. Chinese Journal of Applied Ecology, 2018, 29(5): 1479-1488.]
[32] 肖涵余, 张明军, 王圣杰, 等. 陕甘宁地区降水同位素云下二次蒸发效应[J]. 应用生态学报, 2020, 31(11): 3814-3822.
[32] [Xiao Hanyu, Zhang Mingjun, Wang Shengjie, et al. Sub-cloud secondary evaporation effect of precipitation isotope in Shanxi-Gansu-Ningxia region, China[J]. Chinese Journal of Applied Ecology, 2020, 31(11): 3814-3822.]
[33] 陈发虎, 陈婕, 黄伟. 东亚夏季风减弱诱发我国西北干旱区降水增加[J]. 中国科学: 地球科学, 2021, 51(5): 824-826.
[33] [Chen Fahu, Chen Jie, Huang Wei. Weakened east Asian summer monsoon triggers increased precipitation in Northwest China[J]. Scientia Sinica (Terrae), 2021, 51(5): 824-826.]
[34] 肖云清, 杨苑媛, 朱海斌, 等.2018年7月22—23日宁夏暴雨天气过程物理机制诊断分析[J]. 宁夏工程技术, 2019, 18(3): 193-201.
[34] [Xiao Yunqing, Yang Yuanyuan, Zhu Haibin, et al. Physical mechanism analysis of rainstorm weather process in Ningxia from July 22 to 23, 2018[J]. Ningxia Engineering Technology, 2019, 18(3): 193-201. ]
[35] 孙从建, 周思捷, 陈亚宁, 等. 中亚高山区云下与地表降水氢氧稳定同位素时空分布特征及其水汽来源分析[J]. 水资源保护, 2022, 38(5): 111-121, 140.
[35] [Sun Congjian, Zhou Sijie, Chen Yaning, et al. Spatiotemporal distribution and water vapor sources of stable isotopes of hydrogen and oxygen in below-cloud and surface precipitation in alpine region in Central Asia[J]. Water Resources Protection. 2022, 38(5): 111-121, 140.]
[36] 陈曦, 李志, 程立平, 等. 黄土塬区大气降水的氢氧稳定同位素特征及水汽来源[J]. 生态学报, 2016, 36(1): 98-106.
[36] [Chen Xi, Li Zhi, Cheng Liping, et al. Analysis of stable isotopic composition and vapor source of precipitation at the Changwu Loess Tableland[J]. Acta Ecologica Sinica, 2016, 36(1): 98-106.]
[37] 孙力, 马梁臣, 沈柏竹, 等.2010年7—8月东北地区暴雨过程的水汽输送特征分析[J]. 大气科学, 2016, 40(3): 630-646.
[37] [Sun Li, Ma Liangchen, Shen Baizhu, et al. A diagnostic study of water vapor transport and budget of heavy rainfall over Northeast China during July to August 2010[J]. Chinese Journal of Atmospheric Sciences, 2016, 40(3): 630-646. ]
[38] Jia W X, Xiong H, Zhu G F, et al. Influence of sub-cloud secondary evaporation and moisture sources on stable isotopes of precipitation in Shiyang River Basin, Northwest China[J]. Water, 2022, 14(17): 2700.
文章导航

/