稳态风沙流沙粒起跳速度概率分布模型
收稿日期: 2023-05-05
修回日期: 2023-06-24
网络出版日期: 2023-09-28
基金资助
国家自然科学基金青年项目(41901012);中国科学院沙漠与沙漠化重点实验室开放课题(KLDD-2021-005);中国博士后科学基金项目(2019M663615);陕西省教育厅科研计划项目(22JS017)
Liftoff velocity distribution model of aeolian sand grains in saturated wind-sand flow
Received date: 2023-05-05
Revised date: 2023-06-24
Online published: 2023-09-28
颗粒起跳速度概率分布函数是泥沙输运和粉尘释放模型中的重要输入参数。然而,为了可靠描述这种分布函数,需要准确测量近地层风沙流内起跳颗粒的运动轨迹。本文使用高速摄影系统和颗粒轨迹检测算法相结合测量了风洞沙床面附近部分溅射颗粒、没有引起溅射的反弹颗粒以及引起1个溅射的反弹颗粒的轨迹,通过分析三种起跳模式对应的起跳速度概率分布构建稳态风沙流跃移颗粒起跳速度的概率分布模型。结果表明:(1) 三种起跳模式的起跳角度和起跳速度均服从Lognormal概率分布。(2) 所有起跳颗粒的起跳角度概率分布方程几乎不受起跳模式影响。(3) 所有起跳颗粒的起跳速度概率分布方程主要受溅射颗粒数与反弹颗粒数比值的控制,预示着风沙流发育过程或湍流波动将会对起跳速度概率分布函数产生重要影响。因此,我们的研究结果提供了关于近床面风沙跃移过程的新认识,并对模拟风沙输运中的粒-床相互作用和地貌动力学模型具有重要意义。
蒋缠文 , 王晓艳 . 稳态风沙流沙粒起跳速度概率分布模型[J]. 干旱区研究, 2023 , 40(9) : 1382 -1390 . DOI: 10.13866/j.azr.2023.09.02
The probability distribution function (PDF) of the liftoff velocities of aeolian (wind-blown) sand particles, an important parameter in sediment transport and dust emission models, remains poorly understood due to the challenges in tracking particle dynamics during the liftoff process. To reliably describe this distribution function, measurements of the individual particle trajectories near the sand-bed during sediment transport are required. In this study, we address this issue by employing an improved particle tracking velocimetry technique, enabling us to capture the particle-bed collision process of many liftoff grains in consecutive images and, consequently, to obtain multiple liftoff particle trajectories with different liftoff modes during sand transport in a boundary layer wind tunnel. Subsequently, using the wind tunnel, we measured the trajectory of splash particles, rebound particles that generated no splash particles, and rebound particles that generated only one splash particle near the sand bed. By analyzing the probability distribution of the liftoff velocities of these three liftoff modes, a probability distribution model for the liftoff velocities of particles in a steady-state wind-sand flow was constructed. The results indicate the following: (1) The liftoff angles and speeds of the three liftoff modes all follow a Lognormal probability distribution. (2) The PDF for the liftoff angle of the total liftoff particles is largely unaffected by the liftoff mode. (3) The PDF for the liftoff velocity of the total liftoff particles is mainly controlled by the number of splash particles to that of rebound particles. This indicates that the development process of wind-sand flow or turbulence fluctuations impacts the PDF of liftoff velocity. The different shapes of the probability distribution curve for liftoff velocities may only reflect the specific development of wind-sand flow. Our results offer new insights into the aeolian sand saltation process near the bed surface and are crucial for simulating particle-bed interactions and improving geomorphic dynamics models in aeolian sand transport. Our study on the probability distribution model of liftoff velocity opens a new avenue of investigation in the aeolian and soil sciences and aids the understanding of the dynamics of near-bed particle transport. This transport plays an essential role in aeolian research, as well as in the geomorphodynamics of Earth, Mars, and other celestial bodies within our solar system.
[1] | Bagnold R A. The Physics of Blown Sand and Sand Dunes[M]. New York: William Morrow, 1941. |
[2] | Anderson R S, Haff P K. Simulation of eolian saltation[J]. Science, 1988, 241: 820-823. |
[3] | Willetts B B, Rice M A. Collision in Aeolian saltation[J]. Acta Mechanica Sinica, 1986, 63: 255-265. |
[4] | Sauermann G, Kroy K, Herrmann H J. A continuum saltation model for sand dunes[J]. Physical Review E, 2001, 64(3): 031305. |
[5] | 谢莉, 郑晓静. 风沙流中沙粒起跳初速度分布的探讨[J]. 中国沙漠, 2003, 23(6): 637-641. |
[5] | [Xie Li, Zheng Xiaojing. Distribution of initial velocity of lift-off sand particles in aeolian saltation[J]. Journal of Desert Research, 2003, 23(6): 637-641.] |
[6] | Yin X, Huang N, Jiang C, et al. Splash function for the collision of sand-sized particles onto an inclined granular bed, based on discrete-element-simulations[J]. Powder Technol, 2021, 378(Part A): 348-358. |
[7] | Xiao F J, Dong Z B, Guo L J, et al. Sand particle lift-off velocity measurements and numerical simulation of mass flux distributions in a wind tunnel[J]. Journal of Arid Land, 2017, 9(3): 331-344. |
[8] | 张正偲, 董治宝, 赵爱国, 等. 沙漠地区风沙活动特征——以中国科学院风沙观测场为例[J]. 干旱区研究, 2007, 24(4): 550-555. |
[8] | [Zhang Zhengcai, Dong Zhibao, Zhao Aiguo, et al. Features of sand drift movement in desert: A case study at sand drift observation station of Chinese Academy of Sciences[J]. Arid Zone Research, 2007, 24(4): 550-555.] |
[9] | 吕萍, 董治宝. 风沙边界层动力学研究现状及面临的问题[J]. 干旱区研究, 2004, 21(2): 122-124. |
[9] | [Lv Ping, Dong Zhibao. Current situation and existing problems in the study on the dynamics of blown-sand boundary layer[J]. Arid Zone Research, 2004, 21(2): 122-124.] |
[10] | 张正偲, 张焱, 马鹏飞, 等. 雅鲁藏布江中游风沙区典型下垫面空气动力学参数研究[J]. 干旱区研究, 2022, 39(4): 997-1005. |
[10] | [Zhang Zhengcai, Zhang Yan, Ma Pengfei, et al. Aerodynamic parameters of typical underlying surfaces in an aeolian region in the middle reaches of the Yarlung Zangbo River[J]. Arid Zone Research, 2022, 39(4): 997-1005.] |
[11] | 黄宁. 沙粒带电及风沙电场对风沙跃移运动影响的研究[D]. 兰州: 兰州大学, 2002. |
[11] | [Huang Ning. Electrification in Wind-blown Sand Flux and its Influence to Wind-blown Sand Saltaion[D]. Lanzhou: Lanzhou University, 2002.] |
[12] | Durán O, Andreotti B, Claudin P. Numerical simulation of turbulent sediment transport, from bed load to saltation[J]. Physics of Fluids, 2012, 24: 103306. |
[13] | Dong Z B, Liu X P, Li F, et al. Impact-entrainment relationship in a saltating cloud[J]. Earth Surface Processes and Landforms, 2002, 27(6): 641-658. |
[14] | 佟鼎, 黄宁. 天然混合沙运动速度特征的风洞PIV实验[J]. 工程力学, 2011, 28(7): 229-237. |
[14] | [Tong Ding, Huang Ning. Wind tunnel experiment of sand velocity in nature aeolian sand transport using particle image velocimetry[J]. Engineering Mechanics, 2011, 28(7): 229-237.] |
[15] | Dong Z B, Qian G Q, Luo W Y, et al. Measuring the velocity of sand particles in an air/particle two-phase flow: A comparison of several commonly used methods[J]. Sciences in Cold and Arid Regions, 2010, 2(3): 185-197. |
[16] | White B R, Schulz J C. Magnus effect in saltation[J]. Journal of Fluid Mechanics, 1977, 81: 497-512. |
[17] | Jiang C W, Eric J R, Dong Z B, et al. Wind-tunnel experiments of Aeolian sand transport reveal a bimodal probability distribution function for the particle lift-off velocities[J]. Catena, 2022, 217, 106496. |
[18] | Jiang C W, Dong Z B, Zhang Z C. Measurement of the movement parameters of saltating sandover a flat sand bed using a high-speed digital camera[J]. Environmental Earth Sciences, 2015, 74: 4865-4874. |
[19] | Ho T D, Dupont P, Moctar A, et al. Particle velocity distribution in saltation transport[J]. Physical Review E, 2012, 85(5): 052301. |
[20] | Cheng H, Zou X Y, Zhang C L. Probability distribution functions for the initial liftoff velocities of saltating sand grains in air[J]. Journal of Geophysical Research, 2006, 111: D22205. |
[21] | 凌裕泉, 吴正. 风沙运动的动态摄影实验[J]. 地理学报, 1980, 35(2): 174-181. |
[21] | [Ling Yuquan, Wu Zheng. Experimention on the dynamic photography of the movement of sand-driving wind[J]. Acta Geographica Sinica, 1980, 35(2): 174-181.] |
[22] | Araoka K N, Maeno N. Dynamical behavior of snow particles in the saltation layer, in Proceedings of 3rd Symposium on Polar Meteorogy and Glaciology[J]. National Institute of Polar Research, 1981, 19: 253-263. |
[23] | Willetts B R, Rice M A. Intersaltation Collision, Paper Presented at International Workshop on the Physics of Blown Sand[M]. Denmark: Aarhus University, 1985. |
[24] | Nalpanis P, Hunt L C, Barrett C F. Saltating particles over flat beds[J]. Journal of Fluid Mechanics, 1993, 251: 661-685. |
[25] | Rice M A, Willetts B B, McEwan I K. An experimental study of multiple grain-size ejecta produced by collisions of saltating grains with a flat bed[J]. Sedimentology, 1995, 42: 695 -706. |
[26] | 杨保. 风沙流中跃移沙粒运动参数变化及分布规律的研究[D]. 兰州: 中国科学院兰州沙漠研究所, 1997. |
[26] | [Yang Bao. The Change of Movement Parameters and their Laws for Saltation Sand Grains in Air[D]. Lanzhou: Desert Research Institute, Chinese Academy of Sciences, 1997.] |
[27] | Chepil W S. Dynamics of wind erosion, part I[J]. Soil Science 1945, 60: 305-320. |
[28] | Chepil W S. Dynamics of wind erosion, part II[J]. Soil Science, 1945, 60: 397-401. |
[29] | Chepil W S. Dynamics of wind erosion, part III[J]. Soil Science, 1945, 60: 475-480. |
[30] | Owen P R. Saltation of uniform grains in air[J]. Journal of Fluid Mechanics, 1964, 20: 225-242. |
[31] | 贺大良, 刘大有. 跃移砂粒起跳的受力机制[J]. 中国沙漠, 1989, 9(2): 14-25. |
[31] | [He Daliang, Liu Dayou. Force mechanism of lifting off saltation sand particles[J]. Journal of Desert Research, 1989, 9(2): 14-25.] |
/
〈 | 〉 |