植物生态

环境因子对不同种类人工乔木林分蒸腾耗水的影响

  • 李健男 ,
  • 史海滨 ,
  • 苗庆丰 ,
  • 珊丹 ,
  • 荣浩 ,
  • 温雅琴
展开
  • 1.内蒙古农业大学水利与土木建筑工程学院,内蒙古 呼和浩特 010018
    2.水利部牧区水利科学研究所,内蒙古 呼和浩特 010020
    3.呼和浩特市水资源与河湖保护中心,内蒙古 呼和浩特 010020
李健男(1995-),男,硕士研究生,主要从事节水灌溉理论与新技术研究. E-mail: 15771397210@163.com

收稿日期: 2023-01-29

  修回日期: 2023-02-17

  网络出版日期: 2023-08-24

基金资助

内蒙古自治区科技计划项目(2019GG023);内蒙古自治区科技重大专项(zdzx2018058)

Effect of environmental factors on the transpiration water consumption of various artificial arbor stands

  • Jiannan LI ,
  • Haibin SHI ,
  • Qingfeng MIAO ,
  • Dan SHAN ,
  • Hao RONG ,
  • Yaqin WEN
Expand
  • 1. College of Water Conservancy and Civil Engineer, Inner Mongolia Agriculture University, Hohhot 010018, Inner Mongolia, China
    2. Institute of Water Resources for Pastoral Area, Ministry of Water Resources of China, Hohhot 010020, Inner Mongolia, China
    3. Hohhot Water Resources and River and Lake Protection Center, Hohhot 010020, Inner Mongolia, China

Received date: 2023-01-29

  Revised date: 2023-02-17

  Online published: 2023-08-24

摘要

探究干旱区不同人工乔木林分蒸腾量对环境因子响应的程度,对矿区移植人工植被选择及维系生态环境提供理论依据。本研究利用EMS81 Sap flow meter 茎流监测系统和Watch Dog土壤水分传感器对锡林浩特胜利东二号矿区内人工白杨和油松的树干液流及相应根系附近土壤水分进行监测,结合当地国家气象站气象数据,分析白杨和油松的林分蒸腾量变化差异,并对不同月份白杨和油松林分蒸腾量及各环境因子进行逐步回归建模。结果表明:(1) 自然条件下,干旱区不同月份白杨和油松林分蒸腾量变化具有明显差异,除5月上旬白杨和油松林分蒸腾量变化趋势相近外,其余时间白杨林分蒸腾量变化较油松更剧烈;(2) 在土壤水分变化较小或无明显变化时期,油松根系附近土壤深度30 cm、50 cm、70 cm、90 cm处的土壤含水量明显大于同深度白杨根系附近土壤含水量,根系土壤持水性能较白杨更好;(3) 白杨林分蒸腾量与根系不同深度处的土壤水分变化最大值在5月、7月、9月具有相关性,油松林分蒸腾量与根系不同深度处的土壤水分变化最大值在6月、8月具有相关性,两者林分蒸腾量变化受土壤水分变化影响的程度是不同的;(4) 不同时间区间逐步回归模型进入因子数量与贡献率具有一定差异,按月逐步回归能更好进行对林分蒸腾量的拟合。

本文引用格式

李健男 , 史海滨 , 苗庆丰 , 珊丹 , 荣浩 , 温雅琴 . 环境因子对不同种类人工乔木林分蒸腾耗水的影响[J]. 干旱区研究, 2023 , 40(8) : 1312 -1321 . DOI: 10.13866/j.azr.2023.08.12

Abstract

This study aims to explore the transpiration response of different artificial arbor stands to environmental factors in arid areas and provide a theoretical basis for selecting transplanted artificial vegetation and maintaining the ecological environment in mining areas. In this study, the EMS81 Sap flow meter stemflow monitoring system and Watch Dog soil moisture sensor were used to monitor trunk sap flow in artificial Populus tomentosa and Pinus tabulaeformis stands in the Shengli East No. 2 mining area of Xilinhot, as well as the soil moisture near their respective roots. Meteorological data from the local national meteorological station were incorporated to analyze the variations in transpiration between the Populus tomentosa and Pinus tabulaeformis stands. Stepwise regression modeling was employed to assess the transpiration of Populus alba and Pinus tabulaeformis stands across different months and various environmental factors. During the first ten days of May, Populus tomentosa and Pinus tabulaeformis exhibited similar change trends in daily transpiration. However, for the remaining period, Populus tomentosa exhibited a more intense change in daily transpiration than Pinus tabulaeformis. During the periods with no significant changes in soil moisture, the soil moisture content near the roots of Pinus tabulaeformis at depths of 30 cm, 50 cm, 70 cm, and 90 cm was significantly higher than that near the roots of Populus alba at the same depths. The maximum transpiration value of poplar stands and the corresponding soil water changes at different root depths were correlated in May, July, and September, while those of Chinese pine stands were correlated in June and August. The number of entry factors and the contribution rate of stepwise regression models varied across different time intervals. Under natural conditions, the changes in transpiration of Populus tomentosa and Pinus tabulaeformis stands in arid areas differ significantly between months and are affected to varying degrees by changes in soil moisture. Moreover, the soil water holding capacity of Pinus tabulaeformis roots was better than that of Populus tomentosa roots during periods of minimal or insignificant changes in soil water. Monthly stepwise regression provides an improved fit for stand transpiration.

参考文献

[1] 张旭阳, 刘英, 龙林丽, 等. 干旱半干旱区采煤沉陷引起的土壤水分变化及其对植物生理生态潜在影响分析综述[J]. 浙江大学学报(农业与生命科学版), 2022, 48(4): 415-425.
[1] [ Zhang Xuyang, Liu Ying, Long Linli, et al. Review on analysis of soil moisture changes caused by coal mining subsidence in arid and semi-arid areas and their potential effects on plant physiology and ecology[J]. Journal of Zhejiang University(Agriculture and Life Sciences), 2022, 48(4): 415-425. ]
[2] 郭二果, 王成, 彭镇华, 等. 半干旱地区城市单位附属绿地绿化树种的选择——以神东矿区为例[J]. 林业科学, 2007, 43(7): 35-43.
[2] [ Guo Erguo, Wang Cheng, Peng Zhenhua, et al. Woody landscape plants selection in urban accessory greenlands of branches in semi- arid areas-an example of Shendong Mining Area[J]. Scientia Silvae Sinicae, 2007, 43(7): 35-43. ]
[3] 杨越, 吴才武, 杨依天, 等. 冀北坝上地区不同人工植被土壤水分变化特征[J]. 灌溉排水学报, 2020, 39(5): 42-47.
[3] [ Yang Yue, Wu Caiwu, Yang Yitian, et al. Soil moisture variation characteristics of different artificial vegetation in bashang area of Northern Hebei[J]. Journal of Irrigation and Drainage, 2020, 39(5): 42-47. ]
[4] Liu Z, Liu Q, Wei Z, et al. Partitioning tree water usage into storage and transpiration in a mixed forest[J]. Forest Ecosystems, 2021, 8(1): 1-13.
[5] 洪光宇, 王晓江, 刘果厚, 等. 毛乌素沙地沙柳液流特征及其对环境因子的响应[J]. 干旱区研究, 2021, 38(3): 794-801.
[5] [ Hong Guangyu, Wang Xiaojiang, Liu Guohou, et al. Characteristics of Salix psammophila sap flow and its response to environmental factors in Mu Us Sandy Land[J]. Arid Zone Research, 2021, 38(3): 794-801. ]
[6] 王艳兵, 德永军, 熊伟, 等. 华北落叶松夜间树干液流特征及生长季补水格局[J]. 生态学报, 2013, 33(5): 1375-1385.
[6] [ Wang Yanbing, De Yongjun, Xiong Wei, et al. The characteristics of nocturnal sap flow and stem water recharge pattern in growing season for a Larix principis-rupprechtii plantation[J]. Acta Ecologica Sinica, 2013, 33(5): 1375-1385. ]
[7] Shen Q, Gao G Y, Fu B J, et al. Sap flow and water use sources of shelter-belt trees in an arid inland river basin of Northwest China[J]. Ecohydrology, 2016, 8(8): 1446-1458.
[8] 刘明国, 唐敬超, 王玉涛, 等. 辽西地区油松树干液流变化规律及影响因子研究[J]. 沈阳农业大学学报, 2011, 42(2): 175-179.
[8] [ Liu Mingguo, Tang Jingchao, Wang Yutao, et al. Sapwood flow of Chinese Pine and its affecting factors in West Liaoning Province[J]. Journal of Shenyang Agricultural University, 2011, 42(2): 175-179. ]
[9] Hong L, Guo J, Liu Z, et al. Time-lag effect between sap flow and environmental factors of Larix principis-rupprechtii mayr[J]. Forests, 2019, 10(11): 971.
[10] Liu F, You Q, Xue X, et al. The stem sap flow and water sources for Tamarix ramosissima in an artificial shelterbelt with a deep groundwater table in Northwest China[J]. Frontiers in Plant Science, 2022, 13(3): 794084.
[11] Wang Lei, Liu Zebin, Guo Jianbin, et al. Estimate canopy transpiration in larch plantations via the interactions among reference evapotranspiration, leaf area index, and soil moisture[J]. Forest Ecology and Management, 2021, 481: 118749
[12] 闫雪, 刘廷玺, 吕扬, 等. 科尔沁沙丘-草甸过渡带人工杨树林蒸腾耗水特征[J]. 中国沙漠, 2016, 36(6): 1571-1579.
[12] [ Yan Xue, Liu Tingxi, Lv Yang, et al. Transpiration of artificial Populus forest in the dunes-meadow ecotone of Horqin Sandy Land[J]. Journal of Desert Research, 2016, 36(6): 1571-1579. ]
[13] 陈胜楠, 孔喆, 陈立欣, 等. 半干旱区城市环境下油松林分蒸腾特征及其影响因子[J]. 生态学报, 2020, 40(4): 1269-1280.
[13] [ Chen Shengnan, Kong Zhe, Chen Lixin, et al. The stand transpiration characteristics of Pinus tabulaeformis and its influential factors in a semi-arid urban environment[J]. Acta Ecologica Sinica, 2020, 40(4): 1269-1280. ]
[14] Barnard D M, Bauerle W L. Seasonal variation in canopy aerodynamics and the sensitivity of transpiration estimates to wind velocity in broadleaved deciduous species[J]. Journal of Hydrometeorology, 2016, 17(12): 3029-3043.
[15] 李晓丽, 刘勇, 乔栋, 等. 毛白杨苗木木质化期灌溉对其造林3个生长季后生长和生理特性的影响[J]. 中南林业科技大学学报, 2022, 42(5): 11-18, 32.
[15] [ Li Xiaoli, Liu Yong, Qiao Dong, et al. Effects of irrigation during the lignification phase on the growth and physiological characteristics of Populus tomentosa seedlings after afforestation for three growing seasons[J]. Journal of Central South University of Forestry & Technology, 2022, 42(5): 11-18, 32. ]
[16] 金思雨, 彭祚登. 刺槐和油松干旱胁迫响应研究进展[J]. 西北林学院学报, 2022, 37(4): 79-91.
[16] [ Jin Siyu, Peng Zuodeng. Research progress on drought stress on Robinia pseudoacacia and Pinus tabulaeformis[J]. Journal of Northwest Forestry University, 2022, 37(4): 79-91. ]
[17] 赵文君, 舒德远, 李成龙, 等. 喀斯特森林宜昌润楠蒸腾耗水规律及其与环境因子的关系[J]. 中南林业科技大学学报, 2019, 39(1): 108-115.
[17] [ Zhao Wenjun, Shu Deyuan, Li Chenglong, et al. Relationships among transpiration, water consumption and environmental factors of Machilus ichangensis in Karst forest[J]. Journal of Central South University of Forestry & Technology, 2019, 39(1): 108-115. ]
[18] 贾天宇, 刘廷玺, 段利民, 等. 半干旱沙丘草甸过渡带人工杨树蒸腾耗水规律[J]. 生态学杂志, 2020, 39(10): 3255-3264.
[18] [ Jia Tianyu, Liu Tingxi, Duan Limin, et al. Transpiration and water consumption of poplar trees in semi-arid dune meadow transition zone[J]. Chinese Journal of Ecology, 2020, 39(10): 3255-3264. ]
[19] 孙旭, 杨文慧, 焦磊, 等. 不同时间尺度北京蟒山油松树干液流对环境因子的响应[J]. 生态学报, 2022, 42(10): 4113-4123.
[19] [ Sun Xu, Yang Wenhui, Jiao Lei, et al. Relationships between sapflux density of Pinus tabuliformis trees and environmental factors at different temporal scales in Mangshan National Forest Park of Beijing, China[J]. Acta Ecologica Sinica, 2022, 42(10): 4113-4123. ]
[20] 秦颢萍, 刘泽彬, 郭建斌, 等. 环境和冠层结构对华北落叶松林树干液流的影响[J]. 应用生态学报, 2021, 32(5): 1681-1689.
[20] [ Qin Haoping, Liu Zebin, Guo Jianbin, et al. Effects of environment and canopy structure on stem sap flow in a Larix principis-rupprechtii plantation[J]. Chinese Journal of Applied Ecology, 2021, 32(5): 1681-1689. ]
[21] 丁龙, 赵慧敏, 曾文静, 等. 五种西北旱区植物对干旱胁迫的生理响应[J]. 应用生态学报, 2017, 28(5): 1455-1463.
[21] [ Ding Long, Zhao Huimin, Zeng Wenjing, et al. Physiological responses of five plants in Northwest China arid area under drought stress[J]. Chinese Journal of Applied Ecology, 2017, 28(5): 1455-1463. ]
[22] 赵子涵, 王树森, 罗于洋, 等. 旱榆幼树对土壤失水及复水的生理响应过程研究[J]. 干旱区研究, 2022, 39(5): 1534-1542.
[22] [ Zhao Zihan, Wang Shusen, Luo Yuyang, et al. Physiological responses of a young Gansu elm(Ulmus glaucescens) to soil water loss and rehydration[J]. Arid Zone Research, 2022, 39(5): 1534-1542. ]
[23] 李荣磊, 黄来明, 裴艳武, 等. 毛乌素沙地圪丑沟小流域沙柳水分利用来源研究[J]. 水土保持学报, 2021, 35(2): 122-130.
[23] [ Li Ronglei, Huang Laiming, Pei Yanwu, et al. Water use source of Salix psammophila in Gechougou small watershed of Mu Us Sandy Land[J]. Journal of Soil and Water Conservation, 2021, 35(2): 122-130. ]
[24] 张永旺, 王俊, 屈亚潭, 等. 黄土高原植被恢复过程中土壤水分有效性评价[J]. 灌溉排水学报, 2020, 39(6): 79-85,114.
[24] [ Zhang Yongwang, Wang Jun, Qu Yatan, et al. Evaluating bioavailable soil water during vegetation restoration in the Loess Plateau[J]. Journal of Irrigation and Drainage, 2020, 39(6): 79-85, 114. ]
[25] 范云翔, 邸楠, 刘洋, 等. 毛白杨茎干夜间液流时空动态及其环境影响因子[J]. 植物生态学报, 2023, 47(2): 262-274.
[25] [ Fan Yunxiang, Di Nan, Liu Yang, et al. Spatiotemporal dynamics of nocturnal sap flow of Populus tomentosa and environmental impact factors[J]. Chinese Journal of Plant Ecology, 2023, 47(2): 262-274. ]
[26] 黄雅茹, 李永华, 辛智鸣, 等. 不同时间尺度气象因子与柽柳树干液流关系研究[J]. 干旱区资源与环境, 2020, 34(11): 149-154.
[26] [ Huang Yaru, Li Yonghua, Xin Zhiming, et al. Relationships between meteorological factors and Tamarix chinensiss sap flow at different time scales[J]. Journal of Arid Land Resources and Environment, 2020, 34(11): 149-154. ]
[27] 黄雅茹, 马迎宾, 辛智鸣, 等. 柽柳不同季节树干液流特征及其与土壤含水量及土壤温度的关系[J]. 西北林学院学报, 2021, 36(5): 1-10.
[27] [ Huang Yaru, Ma Yingbin, Xin Zhiming, et al. Flow characteristics of Tamarix chinensis tree trunk fluid in different seasons and the relationships with soil water content and soil temperature[J]. Journal of Northwest Forestry University, 2021, 36(5): 1-10. ]
[28] 赵晓涵, 张方敏, 韩典辰, 等. 内蒙古半干旱区蒸散特征及归因分析[J]. 干旱区研究, 2021, 38(6): 1614-1623.
[28] [ Zhao Xiaohan, Zhang Fangmin, Han Dianchen, et al. Evapotranspiration changes and its attribution in semi-arid regions of Inner Mongolia[J]. Arid Zone Research, 2021, 38(6): 1614-1623. ]
文章导航

/