异质生境下黑果枸杞异形果实的种子休眠及萌发特性
收稿日期: 2023-02-20
修回日期: 2023-04-26
网络出版日期: 2023-08-01
基金资助
国家自然科学基金项目(31860121);“天山雪松计划”青年拔尖人才后备人选项目
Seed germination and dormancy traits of fruit heteromorphism species Lycium ruthenicum in an elevational heterogeneity environment
Received date: 2023-02-20
Revised date: 2023-04-26
Online published: 2023-08-01
黑果枸杞(Lycium ruthenicum)是我国西北干旱区药食同源的国家二级保护植物。在新疆南部自然居群中出现扁形和圆球形果实的两种个体,二者在不同海拔居群出现比例上存在差异。为了了解该物种异形果实的种子在不同海拔居群的萌发特性及其对不同气候类型荒漠环境的响应,对其在不同海拔居群的结籽率和种子质量、休眠、萌发特性及干旱胁迫的响应进行了室内控制性实验的比较研究,以期揭示该物种异形果实对新疆南部不同海拔荒漠环境的响应。结果表明:黑果枸杞扁形果实的结籽率高于圆球形果实;异形果实结籽率随着居群海拔的上升而逐渐降低,种子质量则随海拔的上升而逐渐升高。低海拔居群种子的吸水率比高海拔居群高,扁形果实种子的吸水率高于圆球形果实的种子。高温(20~30 ℃)、低浓度(0.1 mmol·L-1)的赤霉素及全黑暗条件是打破休眠的主要因素。圆球形果实的种子对高浓度30%PEG干旱胁迫的响应能力高于扁形果实的种子;低海拔居群果实的抗旱能力高于高海拔居群。
热依拉穆·麦麦提吐尔逊 , 哈里布努尔 , 艾沙江·阿不都沙拉木 . 异质生境下黑果枸杞异形果实的种子休眠及萌发特性[J]. 干旱区研究, 2023 , 40(7) : 1152 -1163 . DOI: 10.13866/j.azr.2023.07.12
A national second-class protected food and medicinal plant, Lycium ruthenicum grows in Northwest China’s arid, arid-land climate. At various elevation populations in southern Xinjiang, China, this species produces flat and spherical fruit individuals and noticeably varied heteromorphic fruit individuals. We studied seed sets and their quality, seed germination and dormancy, and drought stress responses of both types of fruits from different elevation populations in laboratory settings, as well as the adaptive strategies of this species in different climate weather populations at southern Xinjiang to better understand how the heteromorphic fruit of this species adapted to its different climate desert habitat. Flat fruits had a larger seed set than globular fruits. Moreover, the seed set was reduced for both types of fruits with the increasing elevation, while seed quality improved for the same as elevation increased. The ability of seeds to absorb water is greater in low-elevation populations than in high-elevation populations, and the ability of seeds in flat fruit to absorb water is greater than that of globular fruit. The major elements that were employed to disrupt L. ruthenicum seed dormancy and increase seed germination were high temperature (20-30 °C), low concentration (0.1 mmol·L-1 of GA3), and dark mode circumstances. The drought resistance of globular fruit seeds in low-elevation populations was greater than that of high-elevation populations, and they were 30% more susceptible to drought stress.
[1] | Abdusalam A, Qing J L. Elevation-related variation in the population characteristics of distylous Primula nivalis affects female fitness and inbreeding depression[J]. Plant Diversity, 2019, 41: 250-257. |
[2] | 刘文亭, 董全民. 种子生态学[M]. 北京: 科学技术文献出版社, 2021. |
[2] | [Liu Wenting, Dong Quanmin. Seed Ecology[M]. Beijing: Science Technological Literature Press, 2021. ] |
[3] | Lu J J, Zhou Y M, Tan D Y, et al. Seed dormancy in six cold desert Brassicaceae species with indehiscent fruits[J]. Seed Science Research, 2015, 25: 276-285. |
[4] | 韩大勇, 张维, 努尔买买提·依力亚斯, 等. 植物种群更新的补充限制[J]. 植物生态学报, 2021, 45(1): 1-12. |
[4] | [Han Dayong, Zhang Wei, Nuermaimaiti Yiliyasi, et al. Recruitment limitation of plant population regeneration[J]. Chinese Journal of Plant Ecology, 2021, 45(1): 1-12. ] |
[5] | 王雷, 董鸣, 黄振英. 种子异型性及其生态意义的研究进展[J]. 植物生态学报, 2010, 34(5): 578-590. |
[5] | [Wang Lei, Dong Ming, Huang Zhenying. Review of research on seed heteromorphism and its ecological significance[J]. Chinese Journal of Plant Ecology, 2010, 34(5): 578-590. ] |
[6] | Lu J J, Tan D Y, Baskin J M. Germination season and watering regime, but not seed morph, affect life history traits in a cold desert diaspore-heteromorphic annual[J]. PloS One, 2014, 9: e102018. |
[7] | 吉乃提汗·马木提, 成小军, 谭敦炎. 荒漠短命植物异喙菊的小花异形性及繁殖特性[J]. 生物多样性, 2018, 26(5): 498-509. |
[7] | [Jinaitihan Mamut, Cheng Xiaojun, Tan Dunyan. Heteromorphism of florets and reproductive characteristics in Heteracia szovitsii (Asteraceae), a desert ephemeral annual herb[J]. Biodiversity Science, 2018, 26(5): 498-509. ] |
[8] | 韩丽娟, 叶英, 索有瑞. 黑果枸杞资源分布及其经济价值[J]. 中国野生植物资源, 2014, 33(6): 55-57, 63. |
[8] | [Han Lijuan, Ye Ying, Suo Yourui. The resource and economic value of Lycium ruthenicum Murray[J]. Chinese Wild Plant Resources, 2014, 33(6): 55-57, 63. ] |
[9] | 李永洁, 李进, 徐萍, 等. 黑果枸杞幼苗对干旱胁迫的生理响应[J]. 干旱区研究, 2014, 31(4): 756-762. |
[9] | [Li Yongjie, Li Jin, Xu Ping, et al. Physiological responses of Lycium ruthenicum Murr. seedlings to drought stress[J]. Arid Zone Research, 2014, 31(4): 756-762. ] |
[10] | 彭飞, 黄翠华, 尤全刚, 等. 种植黑果枸杞(Lycium ruthenicum)对盐渍土盐分分布的影响[J]. 中国沙漠, 2013, 33(5): 1406-1412. |
[10] | [Peng Fei, Huang Cuihua, Long Quangang, et al. Effects of plantation of Lycium ruthenicum on the soil salt distribution in the Minqin Basin[J]. Journal Of Desert Research, 2013, 33(5): 1406-1412. ] |
[11] | 王桔红, 陈文. 黑果枸杞种子萌发及幼苗生长对盐胁迫的响应[J]. 生态学杂志, 2012, 31(4): 804-810. |
[11] | [Wang Jihong, Chen Wen. Responses of seed germination and seedling growth of Lycium ruthenicum to salt stress[J]. Chinese Journal of Ecology, 2012, 31(4): 804-810. ] |
[12] | 崔德宝, 刘彬. 新疆盐生药用植物资源及开发利用建议[J]. 干旱区资源与环境, 2010, 24(7): 171-175. |
[12] | [Cui Debao, Liu Bin. The halophytes resource of Xinjiang and the suggestion about its exploitation and utilization[J]. Journal of Arid Land Resources and Environment, 2010, 24(7): 171-175. ] |
[13] | 哈里布努尔, 古丽扎尔·阿不都克力木, 热依拉穆·麦麦提吐尔逊, 等. 黑果枸杞两种花型的花部综合征与传粉特性[J]. 植物生态学报, 2022, 46(9):1050-1063. |
[13] | [ Halibunuer, Gulzar Abdukirim, Reyilamu Maimaitituerxun, et al. Floral syndrome and pollination characteristics of two floral morphs in Lycium ruthenicum (Solanaceae)[J]. Chinese Journal of Plant Ecology, 2022, 46(9):1050-1063.] |
[14] | Baskin J M, Baskin C C. A classification system for seed dormancy[J]. Seed Science Research, 2004, 14: 1-16. |
[15] | Brandel M. Ecology of achene dimorphism in Leontodon saxatilis[J]. Annals of Botany, 2007, 100: 1189-1197. |
[16] | Qi W, Bu H Y, Cornelissen J H C, et al. Untangling interacting mechanisms of seed mass variation with elevation: Insights from the comparison of inter-specific and intra-specific studies on eastern Tibetan angiosperm species[J]. Plant Ecology, 2015, 216: 283-292. |
[17] | 董全民, 赵新全, 刘玉祯, 等. 放牧方式对高寒草地矮生嵩草种子大小与数量关系的影响[J]. 植物生态学报, 2022, 46(9): 1018-1026. |
[17] | [Dong Quanmin, Zhao Xinquan, Liu Yuzhen. Effects of different herbivore assemblage on relationship between Kobresia humilis seed size and seed number in an alpine grassland[J]. Chinese Journal of Plant Ecology, 2022, 46(9): 1018-1026. ] |
[18] | 包国章, 唐春丽, 李向林. 不同放牧强度对人工草地牧草生殖分配及种子重量的影响[J]. 生态学报, 2002, 22(8): 1362-1366. |
[18] | [Bao Guozhang, Tang Chunli, Li Xianglin. Effects of stocking intensity on grass reproductive allocation and grain weight on the artificial grassland[J]. Acta Ecologica Sinica, 2002, 22(8): 1362-1366. ] |
[19] | Guo H, Mazer S J, Du G Z. Geographic variation in seed mass within and among nine species of Pedicularis (Orobanchaceae): Effects of elevation, plant size and seed number per fruit[J]. Journal of Ecology, 2010, 98: 1232-1242. |
[20] | Ma Y M, Cha Y P, Tong Z L, et al. The nonlinear change in pollinator assemblages and self-mating syndromes of Primula atrodentata along elevation gradients[J]. Journal of Plant Ecology, 2023, 16(3): rtac109. |
[21] | 胡可, 严光荣, 唐安军. 非生物因子对东方香蒲种群有性更新的影响[J]. 生态学杂志, 2022, 41(6): 1121-1127. |
[21] | [Hu Ke, Yan Guangrong, Tang Anjun. Effects of multiple abiotic factors on sexual recruitment of Typha orientalis population in the riparian zone of Three Gorges Reservoir[J]. Chinese Journal of Ecology, 2022, 41(6): 1121-1127. ] |
[22] | 杨娜, 赵和平, 葛风伟, 等. 2种独行菜萌发对低温胁迫的生理响应[J]. 干旱区研究, 2015, 32(4): 760-765. |
[22] | [Yang Na, Zhao Heping, Ge Fengwei, et al. Physiological response of two Lepidium species to low temperature stress during seed germination[J]. Arid Zone Research, 2015, 32(4): 760-765. ] |
[23] | 卡吾沙尔·库都斯, 刘会良, 张岚, 等. 尖喙牻牛儿苗春/秋萌植株及子代种子的生理生化特性[J]. 干旱区研究, 2022, 39(5): 1473-1485. |
[23] | [Kawushaer Kudushi, Liu Huiliang, Zhang Lan, et al. Physiological and biochemical characteristics of Erodium oxyrrhynchum spring/autumn-germinated plants and seeds[J]. Arid Zone Research, 2022, 39(5): 1473-1485. ] |
[24] | 杨慧, 张泽, 张兰, 等. 柠条种子萌发对不同温度和土壤含水量的响应[J]. 干旱区研究, 2022, 39(6): 1875-1884. |
[24] | [Zhang Hui, Zhang Ze, Zhang Lan, et al. Responses of seed germination of Caragana korshinskii to different temperatures and soil water content[J]. Arid Zone Research, 2022, 39(6): 1875-1884. ] |
[25] | Imbrt E. Ecological consequences and ontogeny of seed heteromorphism[J]. Perspectives in Plant Ecology, Evolution and Systematics, 2002, 5: 13-36. |
[26] | 李阳, 亓雯雯, 李绍阳, 等. 苜蓿种子萌发和幼苗生长对温度、光照和埋深的响应[J]. 生态学杂志, 2021, 40(2): 332-339. |
[26] | [Li Yang, Qi Wenwen, Li Shaoyang, et al. Seed germination and seedling growth of Medicago sativa in response to the variations of temperature, light, and burial depth[J]. Chinese Journal of Ecology, 2021, 40(2): 332-339. ] |
[27] | Mondoni A, Rossi G, Orsenigo S, et al. Climate warming could shift the timing of seed germination in alpine plants[J]. Annals of Botany, 2012, 110: 155-164. |
[28] | Fernindez-Pascual E, Jimenez-Alfaro B, Caujape-Castells J, et al. A local dormancy cline is related to the seed maturation environment, population genetic composition and climate[J]. Annals of Botany, 2015, 112(5): 937-945. |
[29] | 谢丰璞, 王楠, 高静, 等. 旱、盐胁迫对不同海拔、生长年限与贮藏条件的药用大黄种子萌发特性的影响[J]. 生态学杂志, 2023, 42(1): 18-28. |
[29] | [Xie Fengpu, Wang Nan, Gao Jing, et al. Effects of drought and salt stresses on seed germination of Rheum officinale Baill. at different elevations, growth years and storage periods[J]. Chinese Journal of Ecology, 2023, 42(1): 18-28. ] |
[30] | Cotado A, Garcia M B, Munné-Bosch S. Physiological seed dormancy increases at high altitude in Pyrenean saxifrage (Saxifraga longifolia Lapeyr. )[J]. Environmental and Experimental Botany, 2019, 171: 103929. |
[31] | 许静, 杜国祯, 李文龙, 等. 温度和海拔对高寒草甸植物种子萌发进化特性的影响[J]. 兰州大学学报(自然科学版), 2013, 49(3): 377-383. |
[31] | [Xu Jing, Du Guozhen, Li Wenlong, et al. Effects of temperature and altitude on the evolutional characteristicsof seed germination in an alpine meadow[J]. Journal of Lanzhou University (Natural Sciences), 2013, 49(3): 377-383. ] |
[32] | 赵迪, 卜海燕, 王素玉, 等. 不同海拔露蕊乌头种子内源激素和萌发随储藏条件和时间的变化[J]. 生态学杂志, 2019, 38(12): 3651-3659. |
[32] | [Zhao Di, Bu Haiyan, Wang Suyu, et al. The effects of storage conditions and time on endogenous hormone contents and seed germination of Aconitum gymnandrum from different altitudes[J]. Chinese Journal of Ecology, 2019, 38(12): 3651-3659. ] |
[33] | Xia Q, Maharajah P, Cueff G, et al. Integrating proteomics and enzymatic profiling to decipher seed metabolism affected by temperature in seed dormancy and germination[J]. Plant Science, 2018, 269(21): 118-125. |
[34] | 李欣勇, 黄迎, 罗小燕, 等. 球穗扁莎种子的休眠与萌发特性[J]. 生态学杂志, 2020, 39(12): 4015-4021. |
[34] | [Li Xinyong, Huang Ying, Luo Xiaoyan, et al. Seed dormancy and germination characteristics of Pycreus globusus[J]. Chinese Journal of Ecology, 2020, 39(12): 4015-4021. ] |
[35] | Nurulla M, Baskin C C, Lu J J, et al. Intermediate morphophysiological dormancy allows for life-cycle diversity in the annual weed, Turgenia latifolia (Apiaceae)[J]. Australian Journal of Botany, 2015, 62: 630-637. |
[36] | 艾沙江·阿不都沙拉木, 迪丽娜尔·阿布拉, 张凯, 等. 喀什霸王的结实和种子萌发特性[J]. 植物生态学报, 2019, 43(5):437-446. |
[36] | [Aysajan Abdusalam, Dilnar Abula, Zhang Kai, et al. Fruit set and seed germination traits of Zygophyllum kaschgaricum[J]. Chinese Journal of Plant Ecology, 2019, 43(5): 437-446. ] |
[37] | Moreno C, Seal C, Papenbrock J. Seed priming improves germination in saline conditions for Chenopodium quinoa and Amaranthus caudatus[J]. Journal of Agronomy and Crop Science, 2018, 204: 40-48. |
[38] | Sheikh Abol-hasani F, Roshandel P. Induced changes by NaCl Seed priming in Dracocephalum moldavica plants upon salinity[J] Journal of Horticulture and Postharvest Research, 2020, 3: 29-42. |
/
〈 | 〉 |