牧区河岸潜流带硝酸盐氮和氨氮浓度对水文过程的响应机制
收稿日期: 2022-10-13
修回日期: 2023-02-11
网络出版日期: 2023-06-21
基金资助
国家自然科学基金项目(52069017);国家自然科学基金项目(51609118);内蒙古自治区自然科学基金资助项目(2020MS05019)
Response mechanisms of nitrate and ammonia nitrogen concentrations to hydrological processes in the riparian hyporheic zone of pastoral areas
Received date: 2022-10-13
Revised date: 2023-02-11
Online published: 2023-06-21
在牧区和灌溉农业区,大量含氮的畜禽排泄物和氮肥从土壤进入地表水和地下水,是流域面源污染的主要来源。河岸潜流带是削减氮素污染负荷的有效屏障,厘清河岸潜流带对氮素的迁移转化和去除作用是控制流域氮素污染的关键。本研究选取位于典型草原牧区的锡林河上游河段,开展了夏汛期河水与河岸地下水的水位、氨盐(NH4+)和硝酸盐(NO3-)浓度,以及相关环境因子的连续监测,并利用FEFLOW建立了河岸潜流带水流和氮素溶质反应运移模型。利用实测数据拟合的模型能够准确再现河岸潜流带水位和两种主要氮素浓度的动态变化。结果表明:(1) 夏汛期河岸带氮素污染风险较高,河岸带NH4+浓度从降雨前的0.2 mg·L-1升高到降雨后的7.23 mg·L-1,NO3-浓度从1 mg·L-1升高到8.27 mg·L-1。(2) 实测和模拟结果均显示潜流带中氮素动态与降雨、地表水-地下水交换等水文过程密切相关,且NH4+和NO3-浓度对暴雨事件的响应机制不同。(3) 降雨期间,流动性较强的NO3-在淋滤作用下从河水和地表入渗进入河岸带,导致浓度显著升高。同时,降雨事件加强了河水-地下水的交换作用,通过控制营养物质的输入影响氮素生物地球化学循环,从而调节河岸潜流带NH4+和NO3-浓度的变化。本研究初步揭示了牧区河岸带对于氮素的水文和生物地球化学过程的缓冲作用机制,为牧区氮素污染控制提供了科学参考。
薛栋元 , 胡海珠 , 张锦宁 , 任嘉伟 . 牧区河岸潜流带硝酸盐氮和氨氮浓度对水文过程的响应机制[J]. 干旱区研究, 2023 , 40(6) : 937 -948 . DOI: 10.13866/j.azr.2023.06.09
In pastoral and irrigated agricultural areas, nitrogen-containing livestock, poultry manure, and nitrogen fertilizers can enter the surface water and groundwater from the soil, and this is the main source of non-point source pollution in basins. The riparian hyporheic zone acts as an effective barrier to reduce the nitrogen pollution load. Understanding the mechanisms of the migration, transformation, and removal of nitrogen in riparian hyporheic zones is key to controlling nitrogen pollution in the whole basin. In this study, an upper reach of the Xilin River, located in typical pastoral areas, was selected and its water levels, ammonia (NH4+) and nitrate (NO3-) concentrations, as well as the related environmental factors of the river water and riparian groundwater during the summer flood season, were continuously monitored. Based on the high-solution measurements, a water flow and nitrogen reactive transport model of the riparian hyporheic zones was established using FEFLOW. The model fitted using the measured data was found to accurately reproduce the water level dynamics and two main nitrogen concentrations in the riparian hyporheic zone. The results indicate that there is a high risk of nitrogen pollution in the riparian zones during the summer flood season. The NH4+ concentration in the riparian zones can increase from 0.2 mg·L-1 before rainfall events to 7.23 mg·L-1 after rainfall events, and the NO3- concentration can increase from 1 mg·L-1 to 8.27 mg·L-1. Both measured and simulated results show that the nitrogen dynamics in the hyporheic zone are closely related to hydrological processes such as rainfall events and groundwater-surface water exchange. During rainfall events, NO3- with high mobility was found to infiltrate from the river and the ground surface into the riparian zone due to the leaching effect, resulting in a significant increase in the concentration. Meanwhile, the groundwater-river water exchange enhanced by rainfall events can further regulate NO3- and NH4+ concentrations in the riparian hyporheic zone by controlling the input of nutrients and affecting the biogeochemical nitrogen cycles. This study preliminarily reveals the buffering mechanisms of pastoral riparian zones in the hydrological and biogeochemical processes involving nitrogen and provides scientific references for the nitrogen pollution control in pastoral areas.
[1] | Dodds W, Smith V. Nitrogen, phosphorus, and eutrophication in streams[J]. Inland Waters, 2016, 6(2): 155-164. |
[2] | 邹凯波, 张玉虎, 刘晓伟, 等. 气候变化下乌伦古河流域农业面源污染负荷响应[J]. 干旱区研究, 2022, 39(2): 625-637. |
[2] | [Zou Kaibo, Zhang Yuhu, Liu Xiaowei, et al. Response of agricultural nonpoint source pollution load in the Ulungur River basin under climate change[J]. Arid Zone Research, 2022, 39(2): 625-637.] |
[3] | Stutter M, Baggaley N, hUallacháin ó D, et al. The utility of spatial data to delineate river riparian functions and management zones: A review[J]. Science of the Total Environment, 2021, 757: 143982. |
[4] | Boano F, Harvey J W, Marion A, et al. Hyporheic flow and transport processes: Mechanisms, models, and biogeochemical implications[J]. Reviews of Geophysics, 2014, 52(4): 603-679. |
[5] | 杜尧, 马腾, 邓娅敏, 等. 潜流带水文-生物地球化学: 原理、方法及其生态意义[J]. 地球科学, 2017, 42(5): 661-373. |
[5] | [Du Yao, Ma Teng, Deng Yamin, et al. Hydro-biogeochemistry of hyporheic zone: principles, methods and ecological significance[J]. Earth Science, 2017, 42(5): 661-373.] |
[6] | 朱新丽, 金光球, 姜启豪, 等. 侧向潜流交换水动力过程及生态环境效应[J]. 水利水电科技进展, 2017, 37(3): 15-21. |
[6] | [Zhu Xinli, Jin Guangqiu, Jiang Qihao, et al. Processes of lateral hyporheic exchange and its eco-environment effects[J]. Advances in Science and Technology of Water Resources, 2017, 37(3): 15-21.] |
[7] | Du X, Li X, Hao S, et al. Contrasting patterns of nutrient dynamics during different storm events in a semi-arid catchment of northern China[J]. Water Science & Technology, 2014, 69(12): 2533-2540. |
[8] | 包鑫, 江燕, 胡羽聪. 潮河流域降雨径流事件污染物输出特征[J]. 环境科学, 2021, 42(7): 3317-3327. |
[8] | [Bao Xin, Jiang Yan, Hu Yucong, et al. Characteristics of pollutant dynamics under rainfall-runoff events in the chaohe river watershed[J]. Environmental Science, 2021, 42(7): 3317-3327.] |
[9] | Baker E B, Showers W J. Hysteresis analysis of nitrate dynamics in the Neuse River, NC[J]. Science of the Total Environment, 2019, 652: 889-899. |
[10] | 李文超, 雷秋良, 翟丽梅. 流域氮素主要输出途径及变化特征[J]. 环境科学, 2018, 39(12): 5375-5382. |
[10] | [Li Wenchao, Lei Qiuliang, Zhuo Limei. Seasonal changes of the pathways of nitrogen export from an agricultural watershed in China[J]. Environmental Science, 2018, 39(12): 5375-5382.] |
[11] | Trauth N, Schmidt C, Vieweg M, et al. Hyporheic transport and biogeochemical reactions in pool-riffle systems under varying ambient groundwater flow conditions[J]. Journal of Geophysical Research: Biogeosciences, 2014, 119(5): 910-928. |
[12] | Darwiche-Criado N, Comín F A, Sorando R, et al. Seasonal variability of NO3- mobilization during flood events in a Mediterranean catchment: The influence of intensive agricultural irrigation[J]. Agriculture, Ecosystems & Environment, 2015, 200: 208-218. |
[13] | 胡晓冕, 李艳利, 孙伟, 等. 不同水文期太子河上游区域河流硝酸盐来源识别[J]. 水土保持研究, 2021, 28(2): 7-20. |
[13] | [Hu Xiaomian, Li Yanwei, Sun Wei, et al. Identification of nitrate sources in upstream areas of Taizi River Basin in different hydrological periods[J]. Research of Soil and Water Conservation, 2021, 28(2): 7-20.] |
[14] | Wang Z J, Li S L, Yue F J, et al. Rainfall driven nitrate transport in agricultural karst surface river system: Insight from high resolution hydrochemistry and nitrate isotopes[J]. Agriculture, Ecosystems & Environment, 2020, 291: 106787. |
[15] | 潘俊, 李瑞昉, 孟祥焘, 等. 傍河开采驱动下潜流带氮素迁移转化的生物地球化学特征[J]. 环境工程, 2021, 39(8): 62-68. |
[15] | [Pan Jun, Li Ruifang, Meng Xiangtao, et al. Biogeochemical characteristics of nitrogen migration and transformation in subsurface flow belt driven by river collection[J]. Environmental Engineering, 2021, 39(8): 62-68.] |
[16] | Duncan J M, Groffman P M, Band L E. Towards closing the watershed nitrogen budget: Spatial and temporal scaling of denitrification[J]. Journal of Geophysical Research: Biogeosciences, 2013, 118(3): 1105-1119. |
[17] | 张彦隆, 林玲, 王飞飞, 等. 九龙江河流-河口连续体氮素的主要去除过程及N2O排放特征[J]. 厦门大学学报(自然科学版), 2021, 60(2): 382-389. |
[17] | [Zhang Yanlong, Lin Ling, Wang Feifei, et al. Typical nitrogen removal and N2O emission features in river-estuary continuum of the Jiulong River[J]. Journal of Xiamen University(Natural Science), 2021, 60(2): 382-389.] |
[18] | 王佳琪, 马瑞, 孙自永. 地表水与地下水相互作用带中氮素污染物的反应迁移机理及模型研究进展[J]. 地质科技情报, 2019, 38(4): 270-280. |
[18] | [Wang Jiaqi, Ma Rui, Sun Ziyong. Reactive transport and model of nitrogen pollutants in the surface water-ground water interaction zones:A review[J]. Geology Science and Technology Information, 2019, 38(4): 270-280.] |
[19] | 蔡奕, 邢婧文, 阮西科, 等. 河流潜流带氮素迁移转化数值模拟研究进展[J]. 水资源保护, 2023, 39(1): 181-189. |
[19] | [Cai Yi, Xing Jingwen, Yuan Xike, et al. Advances in the numerical simulation of the migration and transformation of nitrogen in hyporheic zones of rivers[J]. Water Resources Protection, 2023, 39(1): 181-189.] |
[20] | Koskinen L, Laitinen M, Lofman J, et al. FEFLOW: A finite element code for simulating groundwater flow, heat transfer and solute transport[J]. Transactions on Ecology and the Environment, 1996, 10: 287-296. |
[21] | 李清海. 锡林河地表水资源年际变化浅析[J]. 人民黄河, 2021, 43(s2): 57-58. |
[21] | [Li Qinghai. Analysis on interannual changes of surface water resources in Xilin River[J]. Yellow River, 2021, 43(s2): 57-58.] |
[22] | 王则宇, 崔向新, 蒙仲举, 等. 风水复合侵蚀下锡林河流域不同管理方式草地表土粒度特征[J]. 土壤, 2018, 50(4): 819-825. |
[22] | [Wang Zeyu, Cui Xiangxin, Meng Zhongju, et al. Different management modes in Xilin River Basin under the combined erosion of wind and water grain size characteristics of grassland topsoil[J]. Soils, 2018, 50(4): 819-825.] |
[23] | HJ 636─2012 水质总氮的测定碱性过硫酸钾消解紫外分光光度法[S]. 北京: 中国环境出版社, 2012. |
[23] | [HJ 636─2012 Water Quality-Determination of Total Nitrogen-Alkaline Potassium Persulfate Digestion UV Spectrophotometric Method[S]. Beijing: China Environmental Science Press, 2012.] |
[24] | HJ 535─2009 水质氨氮的测定纳氏试剂分光光度法[S]. 北京: 中国环境出版社, 2009. |
[24] | [HJ 535─2009 Water Quality-Determination of Ammonia Nitrogen-Nessler’s Reagent Spectrophotometry[S]. Beijing: China Environmental Science Press, 2009.] |
[25] | HJ/T 346─2007 水质硝酸盐氮的测定紫外分光光度法(试行)[S]. 北京: 中国环境出版社, 2007. |
[25] | [HJ/T 346─2007 Water Quality-Determination of Nitrate-Nitrogen-Ultraviolet Spectrophotometry[S]. Beijing: China Environmental Science Press, 2007.] |
[26] | Li J, Mao X, Li M. Modeling hydrological processes in oasis of Heihe River Basin by landscape unit-based conceptual models integrated with FEFLOW and GIS[J]. Agricultural Water Management, 2017, 179: 338-351. |
[27] | Hu H, Binley A, Heppell C M, et al. Impact of microforms on nitrate transport at the groundwater-surface water interface in gaining streams[J]. Advances in Water Resources, 2014, 73: 185-197. |
[28] | 王红越, 任莞露, 王润博, 等. 锡林河流域潜在异养硝化-好氧反硝化菌群的陆向分异及影响因素[J]. 环境科学学报, 2023, 43(3): 478-489. |
[28] | [Wang Hongyue, Ren Wanlu, Wang Runbo, et al. Landward differentiation and influencing factors of heterotrophic nitrification-aerobic denitrification bacterial populations in Xilin River Basin[J]. Acta Scientiae Circumstantiae, 2023, 43(3): 478-489.] |
[29] | 于景丽, 夏晶晶, 李传虹, 等. 锡林河流域Nitrospira的生态位分化及环境驱动力[J]. 微生物学通报, 2020, 47(5): 1418-1429. |
[29] | [Yu Jingli, Xia Jingjing, Li Chuanhong, et al. Niche differentiation of nitrospira and associated environmental driving forces in Xilin River Basin[J]. Microbiology China, 2020, 47(5): 1418-1429.] |
[30] | 芦燕, 曾静, 赵吉, 等. 典型草原区不同生境反硝化菌群的空间特征[J]. 微生物学通报, 2019, 46(4): 707-720. |
[30] | [Lu Yan, Zeng Jing, Zhao Ji, et al. Spatial characteristics of denitrifying bacterial communities in different habitats from typical steppe[J]. Microbiology China, 2019, 46(4): 707-720.] |
[31] | Zarnetske J P, Haggerty R, Wondzell S M. Coupling multiscale observations to evaluate hyporheic nitrate removal at the reach scale[J]. Freshwater Science, 2015, 34(1): 172-186. |
[32] | 田炳燚, 胡海珠, 许丽萍, 等. 半干旱草原河流与地下水交互作用的季节性变化特征[J]. 干旱区资源与环境, 2021, 35(9): 118-125. |
[32] | [Tian Bingyi, Hu Haizhu, Xu Liping, et al. Seasonal variation characteristics of interaction between rivers and groundwater in semi-arid grassland[J]. Journal of Arid Land Resources and Environment, 2021, 35(9): 118-125.] |
[33] | 陈皓月, 胡海珠, 任嘉伟, 等. 草原曲流河垂向潜流交换及其氮素迁移转化[J/OL]. 地球科学: 1-20[2023-05-10]. http://kns.cnki.net/kcms/detail/42.1874.P.20211228.1010.008.html. |
[33] | [Chen Haoyue, Hu Haizhu, Ren Jiawei, et al. Vertical hyporheic exchange and nitrogen transport and transformation in prairie meandering rivers[J]. Earth Science: https://kns.cnki.net/kcms/detail/42.1874.P.20211228.1010.008.html.] |
[34] | 张昌新. 基于Hvorslev模型的微水试验应用[J]. 铁道勘察, 2016, 42(2): 16-20. |
[34] | [Zhang Changxin. Application of slug testing based on Hvorslev mode[J]. Railway Investigation and Surveying, 2016, 42(2): 16-20.] |
[35] | 李小龙, 杨广, 何新林, 等. 玛纳斯河流域地下水水位变化及水量平衡研究[J]. 水文, 2016, 36(4): 85-92. |
[35] | [Li Xiaolong, Yang Guang, He Xinlin, et al. Study on groundwater level change and water balance in Manas River Basin[J]. Journal of China Hydrology, 2016, 36(4): 85-92.] |
[36] | 高志鹏, 郭华明, 屈吉鸿, 等. 卫河流域河流-地下水流系统氮素运移的数值模拟[J]. 地学前缘, 2018, 25(3): 273-284. |
[36] | [Gao Zhipeng, Guo Huaming, Qu Jihong, et al. Numerical simulation of nitrogen transport in river-ground system in the Weihe River Basin[J]. Earth Science Frontiers, 2018, 25(3): 273-284.] |
[37] | 李劭宁, 贾晓鹏. 格尔木河222Rn同位素变化及其对地表水-地下水交互关系的指示意义[J]. 冰川冻土, 2021, 43(4): 1190-1199. |
[37] | [Li Shaoning, Jia Xiaopeng. Variability of 222Rn in Golmud River and its implication for surface-groundwater interaction[J]. Journal of Glaciology and Geocryology, 2021, 43(4): 1190-1199.] |
[38] | Hester E T, Hammond B, Scott D T. Effects of inset floodplains and hyporheic exchange induced by in-stream structures on nitrate removal in a headwater stream[J]. Ecological Engineering, 2016, 97: 452-464. |
[39] | Boyer E W, Alexander R B, Parton W J, et al. Modeling denitrification in terrestrial and aquatic ecosystems at regional scales[J]. Ecological Applications, 2006, 16(6): 2123-2141. |
[40] | Briggs M A, Lautz L K, Hare D K, et al. Relating hyporheic fluxes, residence times, and redox-sensitive biogeochemical processes upstream of beaver dams[J]. Freshwater Science, 2013, 32(2): 622-641. |
[41] | Kunz J V, Annable M D, Rao S, et al. Hyporheic passive flux meters reveal inverse vertical zonation and high seasonality of nitrogen processing in an anthropogenically modified stream (Holtemme, Germany)[J]. Water Resources Research, 2017, 53(12): 10155-10172. |
[42] | McLaughlin K, Nezlin N P, Howard M D A, et al. Rapid nitrification of wastewater ammonium near coastal ocean outfalls, Southern California, USA[J]. Estuarine, Coastal and Shelf Science, 2017, 186: 263-275. |
[43] | Darwiche-Criado N, Comín F A, Sorando R, et al. Seasonal variability of NO3- mobilization during flood events in a Mediterranean catchment: The influence of intensive agricultural irrigation[J]. Agriculture, Ecosystems & Environment, 2015, 200: 208-218. |
[44] | Kawagoshi Y, Suenaga Y, Chi N L, et al. Understanding nitrate contamination based on the relationship between changes in groundwater levels and changes in water quality with precipitation fluctuations[J]. Science of the Total Environment, 2019, 657: 146-153. |
[45] | 陈红光, 孟凡浩, 萨楚拉, 等. 北方牧区草原内陆河流域径流演变特征及其驱动因素分析[J]. 干旱区研究, 2023, 40(1): 39-50. |
[45] | [Chen Hongguang, Meng Fanhao, Sa Chula, et al. Analysis of the characteristics of runoff evolution and its driving factors in a typical inland river basin in arid regions[J]. Arid Zone Research, 2023, 40(1): 39-50.] |
[46] | Mao W, Zhu Y, Wu J, et al. Modelling the salt accumulation and leaching processes in arid agricultural areas with a new mass balance model[J]. Journal of Hydrology, 2020, 591(125392). |
[47] | Jiang R, Woli K P, Kuramochi K, et al. Hydrological process controls on nitrogen export during storm events in an agricultural watershed[J]. Soil Science and Plant Nutrition, 2010, 56(1): 72-85. |
[48] | Lamontagne S, Cosme F, Minard A, et al. Nitrogen attenuation, dilution and recycling in the intertidal hyporheic zone of a subtropical estuary[J]. Hydrology and Earth System Sciences, 2018, 22(7): 4083-4096. |
[49] | Lloyd C E M, Freer J E, Johnes P J, et al. Using hysteresis analysis of high-resolution water quality monitoring data, including uncertainty, to infer controls on nutrient and sediment transfer in catchments[J]. Science of the Total Environment, 2016, 543: 388-404. |
[50] | Liu S, Chui T F M. Impacts of different rainfall patterns on hyporheic zone under transient conditions[J]. Journal of Hydrology, 2018, 561: 598-608. |
[51] | Shen S, Ma T, Du Y, et al. Temporal variations in groundwater nitrogen under intensive groundwater/surface-water interaction[J]. Hydrogeology Journal, 2019, 27(5): 1753-1766. |
[52] | Perovic M, Obradovic V, Kovacevic S, et al. Indicators of groundwater potential for nitrate transformation in a reductive environment[J]. Water Environment Research, 2017, 89(1): 4-16. |
[53] | Di H J, Cameron K C. Nitrate leaching losses and pasture yields as affected by different rates of animal urine nitrogen returns and application of a nitrification inhibitor-a lysimeter study[J]. Nutrient Cycling Agroecosystems, 2007, 79: 281-290. |
[54] | Hoogendoorn C J, Betteridge K, Ledgard S F, et al. Nitrogen leaching from sheep-cattle-and deer-grazed pastures in the Lake Taupo catchment in New Zealand[J]. Animal Production Science, 2011, 51: 416-425. |
[55] | Groeschke M, Kumar P, Winkler A, et al. The role of agricultural activity for ammonium contamination at a riverbank filtration site in central Delhi (India)[J]. Environmental Earth Sciences, 2016, 75(129): 1-14. |
[56] | Anderson T R, Groffman P M, Kaushal S S, et al. Shallow groundwater denitrification in riparian zones of a headwater agricultural landscape[J]. Journal of Environmental Quality, 2014, 43(2): 732-744. |
[57] | Hefting M M, Clement J-C, Bienkowski P, et al. The role of vegetation and litter in the nitrogen dynamics of riparian buffer zones in Europe[J]. Ecological Engineering, 2005, 24(5): 465-482. |
[58] | Zuazo V H D, Raya A M, Ruiz J A. Nutrient losses by runoff and sediment from the taluses of orchard terraces[J]. Water, Air, and Soil Pollution, 2004, 153: 355-373. |
[59] | 王芳芳, 徐欢, 李婷, 等. 放牧对草地土壤氮素循环关键过程的影响与机制研究进展[J]. 应用生态学报, 2019, 30(10): 3277-3284. |
[59] | [Wang Fangfang, Xu Huan, Li Ting, et al. Effects and mechanisms of grazing on key processes of soil nitrogen cycling in grassland: A review[J]. Chinese Journal of Applied Ecology, 2019, 30(10): 3277-3284.] |
/
〈 | 〉 |