天气与气候

宁夏近60 a大气环境容量变化特征及其影响因子

  • 崔洋 ,
  • 王岱 ,
  • 高睿娜 ,
  • 安兴琴
展开
  • 1.中国气象局旱区特色农业气象灾害监测预警与风险管理重点实验室, 宁夏 银川 750002
    2.宁夏气象防灾减灾重点实验室, 宁夏 银川 750002
    3.中国气象科学研究院大气成分研究所, 北京 100081
崔洋(1982-),男,正高级工程师,博士,主要从事气候变化、大气边界层研究. E-mail: cuiyang@cma.gov.cn

收稿日期: 2022-10-31

  修回日期: 2023-01-01

  网络出版日期: 2023-06-21

基金资助

宁夏自然科学优秀青年基金(2022AAC05065);宁夏自然科学基金(2019AAC03252);宁夏重点研发计划重点项目(2022BEG02010)

Atmospheric environmental capacity characteristics and influencing factors of Ningxia over the past 60 years

  • Yang CUI ,
  • Dai WANG ,
  • Ruina GAO ,
  • Xingqin AN
Expand
  • 1. Key Laboratory for Meteorological Disaster Monitoring and Early Warning and Risk Management of Characteristic Agriculture in Arid Regions, CMA, Yinchuan 750002, Ningxia, China
    2. Ningxia Key Laboratory for Meteorological Disaster Prevention and Reduction, Yinchuan 750002, Ningxia, China
    3. Institute of Atmospheric Composition, Chinese Research Academy of Meteorological Sciences, Beijing 100081, China

Received date: 2022-10-31

  Revised date: 2023-01-01

  Online published: 2023-06-21

摘要

为研究宁夏大气环境容量变化及其影响因子,利用1961—2018年气象站逐日历史观测资料,根据箱模型原理对宁夏大气环境容量A(污染物排放总量控制系数)值时空分布及其主要气象影响因子进行分析,并对2018年大气环境容量进行区划评估。结果表明:宁夏各季节大气环境容量A值总体呈减小趋势,速率为-0.47×104~-0.24×104 km2·(10a)-1。各季节A值夏季最大,春季次之,秋季和冬季较小。月A值呈单峰型变化,8月最大、12月最小,空间上呈南高北低的分布特点。受贺兰山、六盘山地形及区域降水量等因素影响,A值低值中心位于银川市和石嘴山市,高值中心位于固原市南部地区。风速和混合层高度变化对宁夏大气环境容量A值年代际演变趋势具有决定影响;降水和风速对其影响存在明显季节和地区差异,风速对北部春季A值贡献较大,降水对中南部夏秋季A值贡献较大。受冶金、火电、化工、建筑等高耗能产业和车辆排放影响,平罗县和利通区属于宁夏大气环境SO2、NOx临界及以下等级承载区,利通区以南各地为高承载区。

本文引用格式

崔洋 , 王岱 , 高睿娜 , 安兴琴 . 宁夏近60 a大气环境容量变化特征及其影响因子[J]. 干旱区研究, 2023 , 40(6) : 885 -895 . DOI: 10.13866/j.azr.2023.06.04

Abstract

This study has aimed to evaluate the characteristics of the atmospheric environmental capacity and its influencing factors in Ningxia. The temporal and spatial distribution of the A value of the atmospheric environmental capacity and its main meteorological influencing factors were analyzed using daily fixed time historical observation data from meteorological stations between 1961 and 2018, based on the box model principle. The atmospheric environmental capacity in 2018 was also evaluated and zoned. The results showed that the A value of the atmospheric environmental capacity showed a decreasing trend in all seasons, with a rate of -0.47×104~-0.24×104 km2·(10a)-1. The annual average A value was largest in the summer, followed by the spring, and then autumn and winter. The monthly A value showed a single peak pattern, with a maximum in August and minimum in December. It was generally high in the south and low in the north in space, and influenced by the topography of Helan Mountain and Liupan Mountain, regional precipitation, and other climatic factors. The low value center for A was located in Yinchuan and Shizuishan City, while the high value center was located in the south of Guyuan City. Wind speed and mixed layer height changes had a significant influence on the interdecadal evolution trend of the atmospheric environmental capacity of A in the Ningxia Hui Autonomous Region. There were obvious seasonal and regional differences on the impacts of precipitation and wind speed. For example, wind speed had a greater contribution to the A value in spring in the north, and precipitation had a greater contribution to the A value in summer and autumn in the south. This was affected by high energy consuming industries such as metallurgy, thermal power, the chemical industry, and construction and vehicle emissions. Pingluo County and Litong District were the critical overload and overload areas for the SO2 and NOx atmospheric environments, and the counties south of Litong District were high bearing areas in Ningxia.

参考文献

[1] 刘鸿亮, 缪天成, 杨本津, 等. 环境容量、背景值赴日考察团考察报告[J]. 环境科学动态, 1983(增刊2): 1-8.
[1] [Lui Hongliang, Liao Tiancheng, Yang Benjin, et al. Environmental capacity and background value investigation report of the investigation mission to Japan[J]. Trends in Environmental Science, 1983(Suppl. 2): 1-8.]
[2] Karen M M, Lawrence C, Marvin P O, et al. A comparison of box and plume model calculations for sulphur deposition and flux in Alberta, Canada[J]. Atmospheric Environment, 1996, 30(17): 2969-2980.
[3] Goyal S K, Chalapati Rao C V. Air assimilative capacitybased environment friendly siting of new industries-A case study of Kochi region, India[J]. Journal of Environmental Management, 2007, 84(4): 473-483.
[4] Gene D D, Yesilyurt C, Tuncel G. Air pollution forecasting in Ankara, Turkey using air pollution index and its relation to assimilative capacity of the atmosphere[J]. Environmental Monitoring and Assessment, 2010, 166(1-4): 11-27.
[5] Ritter M, Müller M D, Tsai M Y, et al. Air pollution modeling over very complex terrain: An evaluation of WRF-Chem over Switzerland for two 1-year periods[J]. Atmospheric Research, 2013, 132(5): 209-222.
[6] 李达, 蒋家文, 陈波洋, 等. 社区大气污染物排放总量控制研究[J]. 环境科学, 1999, 20(5): 100-104.
[6] [Li Da, Jiang Jiawen, Chen Boyang, et al. Study on the total emission control of atmospheric pollutants in Urban district[J]. Environmental Science, 1999, 20(5): 100-104.]
[7] 许艳玲, 薛文博, 王金南, 等. 大气环境容量理论与核算方法演变历程与展望[J]. 环境科学研究, 2018, 31(11): 1835-1840.
[7] [Xu Yanling, Xue Wenbo, Wang Jinnan, et al. Development and prospect of atmospheric environment capacity theory and accounting method[J]. Research of Environmental Sciences, 2018, 31(11): 1835-1840.]
[8] 徐大海, 朱蓉. 我国大陆通风量及雨洗能力分布的研究[J]. 中国环境科学, 1989, 9(5): 367-374.
[8] [Xu Dahai, Zhu Rong. A study on the distribution of ventilation and rainout capacity in mainland China[J]. China Environmental Science, 1989, 9(5): 367-374.]
[9] 徐大海, 朱蓉, 潘在桃. 城市扩散模式与二氧化硫排放总一控制环境的研究[J]. 中国环境科学, 1990, 10(4): 309-313.
[9] [Xu Dahai, Zhu Rong, Pan Zaitao. The studies on standard of emission of SO2and dispersion model in cities[J]. China Environmental Science, 1990, 10(4): 309-313.]
[10] 徐大海, 王郁, 朱蓉. 大气环境容量系数A值频率曲线拟合及其应用[J]. 中国环境科学, 2016, 36(10): 2913-2922.
[10] [Xu Dahai, Wang Yu, Zhu Rong. The atmospheric environmental capacity coefficient cumulative frequency curve fitting and its application[J]. China Environmental Science, 2016, 36(10): 2913-2922.]
[11] 安兴琴, 陈玉春, 吕世华. 兰州市冬季SO2大气环境容量研究[J]. 高原气象, 2004, 23(1): 110-115.
[11] [An Xingqin, Chen Yuchun, Lü Shihua. Study on SO2 atmospheric environmental capacity in Lanzhou winter[J]. Plateau Meteorology, 2004, 23(1): 110-115.]
[12] 孙文杰. 基于WRF/CALMET模拟的兰州新区大气环境容量研究[J]. 环境影响评价, 2021, 43(3): 61-66.
[12] [Sun Wenjie. Research on atmospheric environment capacity of Lanzhou new area based on WRF/CALMET simulation[J]. Environmental Impact Assessment, 2021, 43(3): 61-66.]
[13] 朱蓉, 张存杰, 梅梅. 大气自净能力指数的气候特征与应用研究[J]. 中国环境科学, 2018, 38(10): 3601-3610.
[13] [Zhu Rong, Zhang Cunjie, Mei Mei. The climate characteristics of atmospheric self-cleaning ability index and its application in China[J]. China Environmental Science, 2018, 38(10): 3601-3610.]
[14] 陆琛莉, 李海军, 张雪慧, 等. 2013年12月浙北北部两次重度霾过程的对比分析[J]. 气象与环境科学, 2018, 41(1): 47-55.
[14] [Lu Chenli, Li Haijun, Zhang Xuehui, et al. Comparative analysis on two severe hazes happened in December 2013 in the north part of northern Zhejiang[J]. Meteorological and Environmental Sciences, 2018, 41(1): 47-55.]
[15] 王颖, 梁依玲, 王丽霞. 气象条件对污染物浓度分布影响的研究[J]. 沙漠与绿洲气象, 2015, 9(2): 69-74.
[15] [Wang Ying, Liang Yiling, Wang Lixia. Research on the impact of meteorological field on the spatial distribution of the pollutant concerntration[J]. Desert and Oasis Meteorology, 2015, 9(2): 69-74.]
[16] 吴序鹏, 刘端阳, 谢真珍, 等. 江苏淮安地区大气污染变化特征及其与气象条件的关系[J]. 气象与环境科学, 2018, 41(1): 31-38.
[16] [Wu Xupeng, Liu Duanyang, Xie Zhenzhen, et al. Change characteristics and relationship with meteorological conditions of atmospheric pollution in Huai’an[J]. Meteorological and Environmental Sciences, 2018, 41(1): 31-38.]
[17] 陈渤黎, 雷正翠, 董芹, 等. 2012—2014年常州市大气重污染日的气象条件分析[J]. 气象与环境科学, 2017, 40(1): 87-94.
[17] [Chen Boli, Lei Zhengcui, Dong Qin, et al. Analysis of the meteorological conditions in serious air pollution days in Changzhou from 2012 to 2014[J]. Meteorological and Environmental Sciences, 2017, 40(1): 87-94.]
[18] 郭立平, 乔林, 石茗化, 等. 河北廊坊市连续重污染天气的气象条件分析[J]. 干旱气象, 2015, 33(3): 497-504.
[18] [Guo Liping, Qiao Lin, Shi Minghua, et al. Analysis about meteorological conditions of continuous heavy pollution episodes in Langfang of Hebei Province[J]. Journal of Arid Meteorology, 2015, 33(3): 497-504.]
[19] 刘子龙, 代斌, 崔卓彦, 等. 大气污染物浓度变化特征及潜在源分析——以乌鲁木齐为例[J]. 干旱区研究, 2021, 38(2): 562-569.
[19] [Liu Zilong, Dai Bin, Cui Zhuoyan, et al. Concentration characteristics and potential source of atmospheric pollutants: A case study in Urumqi[J]. Arid Zone Research, 2021, 38(2): 562-569.]
[20] 杨云芸, 李跃清, 周慧, 等. 长沙市API指数时空变化特征及气象条件影响[J]. 气象与环境科学, 2017, 40(1): 108-113.
[20] [Yang Yunyun, Li Yueqing, Zhou Hui, et al. Spatial-temporal variation characteristics of air pollution index and effects of meteorological condition in Changsha[J]. Meteorological and Environmental Sciences, 2017, 40(1): 108-113.]
[21] 刘强. 大气污染物扩散中稳定度判定方法概述[J]. 干旱气象, 2011, 29(3): 355-361.
[21] [Liu Qiang. Summary of methods about determination of atmospheric stablibity in environmental impact assessment[J]. Journal of Arid Meteorology, 2011, 29(3): 355-361.]
[22] 李博, 王颖, 张稼轩, 等. 河谷城市通风系数研究[J]. 环境科学研究, 2018, 31(8): 1382-1388.
[22] [Li Bo, Wang Ying, Zhang Jiaxuan, et al. Ventilation coefficient in river valley terrain[J]. Research of Environmental Sciences, 2018, 31(8): 1382-1388.]
[23] 赵德山. 城市大气污染总量控制方法手册[M]. 北京: 中国环境科学出版社, 1991.
[23] [Zhao Deshan. Handbook on the Total Quantity Control of Urban Air Pollution[M]. Beijing: China Environmental Science Press, 1991.]
[24] 樊杰. 资源环境承载能力和国土空间开发适宜性评价方法指南[M]. 北京: 科学出版社, 2022.
[24] [Fan Jie. Guidelines for Assessment Methods of Resources and Environment Carrying Capacity and Land and Space Development Suitability[M]. Beijing: Science Press, 2022.]
[25] 刘龙华, 汤小华, 陈加兵. 福建省大气环境承载力研究[J]. 亚热带资源与环境学报, 2013, 8(4): 31-39.
[25] [Liu Longhua, Tang Xiaohua, Chen Jiabing. A research on bearing capacity of atmospheric environmental in Fujian Province[J]. Journal of Subtroptical Resource and Environmental, 2013, 8(4): 31-39.]
文章导航

/