植物生态

典型株型沙生灌丛对风沙流场影响的数值模拟

  • 闫晴 ,
  • 李菊艳 ,
  • 尹忠东 ,
  • 刘金苗 ,
  • 柳宏才
展开
  • 1.北京林业大学水土保持学院,北京 100083
    2.新疆维吾尔自治区水土保持生态环境监测总站,新疆 乌鲁木齐 830002
闫晴(1998-),女,硕士研究生,主要从事自然地理方向的研究. E-mail: yqyq0914@163.com

收稿日期: 2022-12-14

  修回日期: 2023-02-06

  网络出版日期: 2023-05-30

基金资助

新疆水土保持监督管理项目(213031003)

Numerical simulation of the influence of typical shrub types on wind-sand flow field

  • Qing YAN ,
  • Juyan LI ,
  • Zhongdong YIN ,
  • Jinmiao LIU ,
  • Hongcai LIU
Expand
  • 1. School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
    2. Xinjiang General Ecological Environment Monitoring Station of Soil and Water Conservation, Urumqi 830002, Xinjiang, China

Received date: 2022-12-14

  Revised date: 2023-02-06

  Online published: 2023-05-30

摘要

研究典型株型沙生灌丛周围的流场分布,旨在为干旱、半干旱地区合理选择不同株型的防风沙植被提供理论依据。本文利用FLUENT软件对3类典型株型(坛形、梭形、帚形)灌丛周围的流场进行数值模拟,分析不同植株形态对风沙流的影响,并加以风洞试验验证,结果表明:(1) 3类株型周围流场可分为5个区,且株后均存在3个涡流。受涡流强度的影响,在积沙初始阶段,梭形、帚形植株主要在株后6~7 H处积沙,而坛形植株在3 H附近积沙。(2) 受植株最大侧影面积高度层的影响,3类株型灌丛株后1 H处的风速极小值依次出现在0.3 m、0.4 m、0.8 m高度处,最优防护高度依次为0.2~0.4 m、0.3~0.6 m、0.8~1 m。3类株型株后的空气动力学粗糙度逐渐减小,且坛形的粗糙度明显高于其他株型。(3) 3类株型在-2~10 H范围内均可有效降低风速,株后近地表区防风效益表现为坛形>梭形>帚形,而中高空区防风效益均随株距增加而减小。(4) 在T=10 s时,3类植株周围总积沙长度分别为8.5 H、6 H、4.5 H,梭梭、沙拐枣分别在距入口5~5.5 m、4.5~6 m处存在不同程度的风蚀现象。对比其他植株,白刺(Nitraria sphaerocarpa)具有较好的阻沙效果,在防风固沙工程建设中建议将其与梭梭(Haloxylon ammodendron)、沙拐枣(Calligonum mongolicum)结合,既能发挥白刺的阻沙作用,又可利用梭梭、沙拐枣较好的中高空防风效果。

本文引用格式

闫晴 , 李菊艳 , 尹忠东 , 刘金苗 , 柳宏才 . 典型株型沙生灌丛对风沙流场影响的数值模拟[J]. 干旱区研究, 2023 , 40(5) : 785 -797 . DOI: 10.13866/j.azr.2023.05.11

Abstract

The purpose of this study was to provide a theoretical basis for the rational selection of different vegetation types for wind and sand control in arid and semiarid areas. Fluent software was used to numerically simulate the flow field around three types of typical strains (altar-shaped, shuttle-shaped, and broom-shaped) of scrub to analyze the influence of different plant forms on wind and sand flow and verify the results using existing wind tunnel tests. Results showed that (1) The flow field around the three types of plants can be divided into five zones, and three eddies exist behind the plants. Due to the intensity of the eddies, during the initial phase of sand accumulation, shuttle-shaped and broom-shaped plants accumulated sand primarily at 6-7 H after the plant, whereas altar-shaped plants accumulated sand at 3 H. (2) Affected by the height layer of the maximum profile area of the plant, the minimum wind speed at 1 H after the three types of plant shrubs appeared at heights of 0.3, 0.4 m, and 0.8 m, and the optimal protection range of height was 0.2-0.4 m, 0.3-0.6 m, and 0.8-1 m, respectively. The aerodynamic roughness of the three plant types decreased gradually, and the roughness of the altar-shaped plants was significantly higher than that of the other two plant types. (3) All three types of strains could effectively reduce wind speed in the range of -2-10 H. The wind protection benefits in the near-surface area after the strains are altar-shaped > shuttle-shaped > broom-shaped the wind protection benefits in the mid-altitude area all decrease with increasing plant distance. (4) At T = 10 s, the total duration of sand accumulation around the three plants was 8.5 H, 6 H, and 4.5 H, respectively, and wind erosion existed to different degrees at 5-5.5 m and 4.5-6 m from the entrance for Haloxylon ammodendron and Calligonum mongolicum, respectively. Compared with other plants, Nitraria tangutorum exerted a better sand-blocking effect. Hence, it is recommended to combine N. tangutorum with H. ammodendron and C. mongolicum in the construction of wind and sand fixation projects, so that the sand-blocking property of N. tangutorum can be effectuated, and the better wind-blocking effect of H. ammodendron and C. mongolicum can be utilized at medium and high altitudes.

参考文献

[1] 黄富祥, 王明星, 王跃思. 植被覆盖对风蚀地表保护作用研究的某些新进展[J]. 植物生态学报, 2002, 26(5): 627-633.
[1] [Huang Fuxiang, Wang Mingxing, Wang Yuesi. Recent progress on the research of vegetation[J]. Acta Phytoecologica Sinica, 2002, 26(5): 627-633. ]
[2] Wolfe S A, Nickling W G. The protective role of sparse vegetation in wind erosion[J]. Progress in Physical Geography, 1993, 17(1): 50-68.
[3] Gross G. A numerical study of the air flow within and around a single tree[J]. Boundary-layer Meteorology, 1987, 40(4): 311-327.
[4] 亢力强, 杨智成, 张军杰, 等. 两种柔性植株地表风速廓线特征比较的风洞模拟[J]. 中国沙漠, 2020, 40(2): 43-49.
[4] [Kang Liqiang, Yang Zhicheng, Zhang Junjie, et al. Wind tunnel simulation for comparison of wind velocity profile characteristics at two flexible plant surfaces[J]. Journal of Desert Research, 2020, 40(2): 43-49. ]
[5] Abbas M, Deirdre D, Dong Z B. The response of live plants to airflow Implication for reducing erosion[J]. Aeolian Research, 2018, 33(8): 93-105.
[6] 李正农, 余世斌, 吴红华, 等. 强风作用下树木周围流场的数值模拟研究[J]. 中南大学学报(自然科学版), 2021, 52(11): 3970-3980.
[6] [Li Zhengnong, Yu Shibin, Wu Honghua, et al. Numerical simulation of flow field around the tree in strong wind[J]. Journal of Central South University (Science and Technology), 2021, 52(11): 3970-3980. ]
[7] Liu C C, Zheng Z Q, Cheng H, et al. Airflow around single and multiple plants[J]. Agricultural and Forest Meteorology, 2018, 252(4): 27-38.
[8] 屈志强, 刘连友, 吕艳丽. 沙生植物构型及其与抗风蚀能力关系研究综述[J]. 生态学杂志, 2011, 30(2): 357-362.
[8] [Qu Zhiqiang, Liu Lianyou, Lv Yanli. Psammophyte architecture and its relations with anti-wind erosion capability[J]. Chinese Journal of Ecology, 2011, 30(2): 357-362. ]
[9] 程锋梅, 李生宇, 郑伟, 等. 3类典型株型草本植物对沙面风蚀抑制作用的研究[J]. 干旱区研究, 2022, 39(5): 1526-1533.
[9] [Cheng Fengmei, Li Shengyu, Zheng Wei, et al. Study on wind erosion inhibition of three typical herbaceous plants on sand surface[J]. Arid Zone Research, 2022, 39(5): 1526-1533. ]
[10] 张文, 亢力强, 张琴, 等. 植株形态对单植株前后风速变化影响的风洞实验[J]. 北京师范大学学报(自然科学版), 2020, 56(4): 573-581.
[10] [Zhang Wen, Kang Liqiang, Zhang Qin, et al. Speed upwind and downwind of a single plant[J]. Journal of Beijing Normal University (Natural Science), 2020, 56(4): 573-581. ]
[11] 刘虎俊, 王多泽, 袁宏波, 等. 灌木构型与其积沙效能关系的野外观测[C] //鄂尔多斯: 中国治沙暨沙业学会, 中国林业教育学会. 《联合国防治荒漠化公约》第十三次缔约大会“防沙治沙与精准扶贫”边会论文集, 2017: 35-41.
[11] [Liu Hujun, Wang Duoze, Yuan Hongbo, et al. A field observation on accumulation ability of sand with shrub bifurcation structure[C] //Ordos: China National Sand Control and Desert Industry Society, China Education Association of Forestry. Proceedings of the 13th Conference of the Parties to the United Nations Convention to Combat Desertification on “Desertification Prevention and Control and Targeted Poverty Alleviation”, 2017: 35-41. ]
[12] 刘芳. 乌兰布和沙区的植物资源[J]. 内蒙古师大学报(自然科学汉文版), 2000, 29(3): 215-220.
[12] [Liu Fang. Study on plant resources in Ulan Buh Desert[J]. Journal of Inner Mongolia Normal University (Natural Science Edition), 2000, 29(3): 215-220. ]
[13] 张奕. 乌兰布和沙区典型灌木的防风阻沙效益[D]. 北京: 北京林业大学, 2021.
[13] [Zhang Yi. Wind Prevention and Sand Resistance of Typical Shrubs in Ulan Buh Desert[D]. Beijing: Beijing Forestry University, 2021. ]
[14] 刘金苗, 李菊艳, 尹忠东, 等. 干枯骆驼刺对风沙流场影响的数值模拟研究[J]. 干旱区研究, 2022, 39(5): 1514-1525.
[14] [Liu Jinmiao, Li Juyan, Yin Zhongdong, et al. Numerical simulation study on the influence of dry Alhagi camelorum on the wind-sand flow field[J]. Arid Zone Research, 2022, 39(5): 1514-1525. ]
[15] 王翔宇, 赵名彦, 丁国栋, 等. 天然灌草植被防治土壤风蚀机理[J]. 水土保持通报, 2008, 28(5): 55-59.
[15] [Wang Xiangyu, Zhao Mingyan, Ding Guodong, et al. Mechanism of natural shrub-grass in controlling soil erosion by wind[J]. Bulletin of Soil and Water Conservation, 2008, 28(5): 55-59. ]
[16] 俞明聪. 风沙流对准朔铁路路堑响应规律及防风沙措施效果数值研究[D]. 北京: 北京交通大学, 2017.
[16] [Yu Mingcong. Numerical Simulation Research on Response Rule of Wind-Blown Sand Flow to Zhungger-Shuozhou Railway Cutting and Effect of Windbreak and Sand Fixation Measures[D]. Beijing: Beijing Jiaotong University, 2017. ]
[17] 王大帅, 耿文燕, 石龙. 兰新高铁沿线插板式挡沙墙防沙性能研究[J]. 铁道标准设计, 2022, 66(4): 74-79.
[17] [Wang Dashuai, Geng Wenyan, Shi Long. Study on sand-control performance of plug-plate sand-retaining wall along Lanzhou-Urumqi High-speed Railway[J]. Railway Standard Design, 2022, 66(4): 74-79. ]
[18] 岳贤宇. 防风挡沙墙背风侧的流场及沙粒相运动特征[D]. 兰州: 兰州大学, 2022.
[18] [Yue Xianyu. The Flow Field and Sand Movement Characteristics on the Leeward Side of the Windbreak and Sand Retaining Wall[D]. Lanzhou: Lanzhou University, 2022. ]
[19] 何明珠, 张景光, 王辉. 荒漠植物枝系构型影响因素分析[J]. 中国沙漠, 2006, 26(4): 625-630.
[19] [He Mingzhu, Zhang Jingguang, Wang Hui. Analysis of branching architecture factors of desert plants[J]. Journal of Desert Research, 2006, 26(4): 625-630. ]
[20] 孙栋元, 赵成义, 王丽娟, 等. 荒漠植物构型研究进展[J]. 水土保持研究, 2011, 18(5): 281-287.
[20] [Sun Dongyuan, Zhao Chengyi, Wang Lijuan, et al. Progress in the study on architecture of desert plants[J]. Research of Soil and Water Conservation, 2011, 18(5): 281-287. ]
[21] 徐秀芸, 张进虎, 朱国庆, 等. 沙冬青与几种常见物种的防风阻沙效能定量研究[J]. 中国农学通报, 2011, 27(4): 21-25.
[21] [Xu Xiuyun, Zhang Jinhu, Zhu Guoqing, et al. Quantitative research on wind and set sand performance of Ammopiptanthus and several common shrubs[J]. Chinese Agricultural Science Bulletin, 2011, 27(4): 21-25. ]
[22] 杨光, 马文喜, 包斯琴, 等. 亚玛雷克沙漠猫头刺和小叶锦鸡儿灌丛结构与风影沙丘间的关系[J]. 干旱区研究, 2016, 33(3): 540-547.
[22] [Yang Guang, Ma Wenxi, Bao Siqin, et al. Relationship between the structure of Oxytropis aciphylla and Caragana microphylia shrubberies and their wind-shadow dunes[J]. Arid Zone Research, 2016, 33(3): 540-547. ]
[23] 王蕾, 王志, 刘连友, 等. 沙柳灌丛植株形态与气流结构野外观测研究[J]. 应用生态学报, 2005, 16(11): 3-7.
[23] [Wang Lei, Wang Zhi, Liu Lianyou, et al. Field investigation on Salix psammophila plant morphology and airflow structure[J]. Chinese Journal of Applied Ecology, 2005, 16(11): 3-7. ]
[24] 董治宝, 苏志珠, 钱广强, 等. 库姆塔格沙漠风沙地貌[M]. 北京: 科学出版社, 2011: 272-287.
[24] [Dong Zhibao, Su Zhizhu, Qian Guangqiang, et al. Aeolian Geomorphology of the Kumtagh Desert[M]. Beijing: Science Press, 2011: 272-287. ]
[25] 郭春秀, 袁宏波, 徐先英, 等. 石羊河下游7种沙生灌木的构型比较[J]. 西北植物学报, 2015, 35(5): 1031-1036.
[25] [Guo Chunxiu, Yuan Hongbo, Xu Xianying, et al. A comparison on architecture of 7 psammophyte shrubs at lower reaches of Shiyang River Basin[J]. Acta Botanica Boreali-Occidentalia Sinica, 2015, 35(5): 1031-1036. ]
[26] 张奕, 肖辉杰, 辛智鸣, 等. 乌兰布和沙区典型灌木防风阻沙效益[J]. 中国水土保持科学, 2021, 19(1): 87-96.
[26] [Zhang Yi, Xiao Huijie, Xin Zhiming, et al. Wind prevention and sand resistance of typical shrubs in Ulan Buh Desert[J]. Science of Soil and Water Conservation, 2021, 19(1): 87-96. ]
[27] 董治宝, 郑晓静. 中国风沙物理研究50 a(Ⅱ)[J]. 中国沙漠, 2005, 25(6): 3-23.
[27] [Dong Zhibao, Zheng Xiaojing. Research achievements in aeolian physics in China for last five decades(Ⅱ)[J]. Journal of Desert Research, 2005, 25(6): 3-23. ]
[28] 唐艳, 刘连友, 屈志强, 等. 植物阻沙能力研究进展[J]. 中国沙漠, 2011, 31(1): 43-48.
[28] [Tang Yan, Liu Lianyou, Qu Zhiqiang, et al. Research review of capacity of plant for trapping blown sand[J]. Journal of Desert Research, 2011, 31(1): 43-48. ]
[29] 屈志强, 张莉, 丁国栋, 等. 毛乌素沙地常见灌木单株对土壤风蚀的影响[J]. 中国水土保持科学, 2008, 6(4): 66-70.
[29] [Qu Zhiqiang, Zhang Li, Ding Guodong, et al. Effect of single shrub on wind erosion in Mu Us Sandland[J]. Science of Soil and Water Conservation, 2008, 6(4): 66-70. ]
[30] Guo Z Y, Yang X F, Wu X X, et al. Optimal design for vegetative windbreaks using 3D numerical simulations[J]. Agricultural and Forest Meteorology, 2021, 6(18): 298-299.
文章导航

/