科尔沁沙地樟子松人工林土壤水分动态及其对降雨的响应
收稿日期: 2022-08-13
修回日期: 2022-10-11
网络出版日期: 2023-05-30
基金资助
中国和美国政府间合作项目(2019YFE0116500);内蒙古自治区科技重大专项(2019ZD003);中国林科院荒漠化所结余经费新立项目(IDS2022JY-8);中国林科院荒漠化所结余经费新立项目(IDS2022JY-9);林业科学技术推广项目([2019]33号);北京林业大学大学生创新训练项目(X202110022026);北京林业大学大学生创新训练项目(X202110022042);北京林业大学大学生创新训练项目(S202110022028)
Dynamic changes in soil moisture and its response to rainfall in Pinus sylvestris var. mongolica plantation in Horqin Sandy Land
Received date: 2022-08-13
Revised date: 2022-10-11
Online published: 2023-05-30
在科尔沁沙地采用“两行一带”种植模式低密度栽培樟子松进行生态修复后,林地土壤水分动态及其对降雨的响应影响了同类型地区是否可以持续使用樟子松进行生态修复。为了研究科尔沁沙地南缘植被修复后土壤水分动态特征,本研究综合运用原位观测、数值模拟的方法,基于土壤水分实测数据校正Hydrus-1D模型,探究降雨-土壤水分响应关系。结果表明:(1) 樟子松人工林显著改变了地区水分分布,裸沙地2.0 m处深层渗漏量占降雨量的44.16%,而樟子松林地深层渗漏量仅占降雨量的0.7%。(2) 监测期内,0.4 m深度以下土壤水分对小雨无响应,土壤水分对中雨的响应深度可达1.0 m,对大雨和暴雨的响应深度涉及整个观测剖面。随着土壤深度的增加,水分波动幅度呈现减小的趋势。(3) 降雨量和深度较浅的土壤体积含水量之间存在较强的相关关系,周期为周、半月的累计降雨量与各层土壤体积含水量显著相关;降雨量大于50 mm时,能保证对2.0 m处土壤水分的补给。(4) 模型的决定系数范围在0.61~0.85,均方根误差范围在0.0061~0.0096 cm3·cm-3,能较好地模拟研究区土壤水分的动态变化特征,且深层模拟精度高于浅层。研究结果对科尔沁沙地雨养型植被造林、生态恢复和水资源管理具有重要的意义。
吉吉佳门 , 程一本 , 谌玲珑 , 万鹏翔 , 张祎晖 , 杨文斌 , 白旭赢 , 王涛 . 科尔沁沙地樟子松人工林土壤水分动态及其对降雨的响应[J]. 干旱区研究, 2023 , 40(5) : 756 -766 . DOI: 10.13866/j.azr.2023.05.08
After ecological restoration in Horqin Sandy Land, the soil moisture dynamics of the forest and its response to rainfall affect whether Pinus sylvestris var. mongolica(PSM) can be continuously used for the ecological restoration in the same type of area. To study the characteristics of soil moisture dynamics after vegetation restoration on the southern edge of Horqin Sandy Land, this study used the methods of in situ observation and numerical simulation and corrected the HYDRUS-1D model based on the measured data of soil moisture to explore its relationship with rainfall. We obtained the following results: (1) The regional moisture distribution was changed by the PSM plantation, deep soil recharge at 2.0 m in bare sand accounted for 44.16% of the annual rainfall, whereas deep soil recharge at 2.0 m in PSM land accounted for only 0.7% of the annual rainfall. (2) Soil moisture below a depth of 0.4 m had no response to light rain, but the response depth of soil moisture to moderate rain could reach 1.0 m. The response depth to heavy rain and rainstorm involved the entire observation profile. With increasing soil depth, a decreasing trend was observed in the variation in moisture fluctuation. (3) There was a strong correlation between rainfall and volumetric soil water content at shallow depth, and the cumulative rainfall at weekly and semi-monthly intervals was significantly correlated with the volumetric soil water content of each layer(P<0.05). Rainfall >50 mm can ensure the supply of soil moisture within 2.0 m. (4) The determination coefficient of the model was between 0.61 and 0.85, and the root mean square error ranged from 0.0061 to 0.0096 cm -3·cm -3. The accuracy of the deep layer simulation was higher than that of the shallow layer. These results have important implications for rain-fed vegetation afforestation in the Horqin Sandy Land.
[1] | 刘源, 李晓晶, 段玉玺, 等. 库布齐沙漠东部植被恢复对土壤生态化学计量的影响[J]. 干旱区研究, 2022, 39(3): 924-932. |
[1] | [Liu Yuan, Li Xiaojing, Duan Yuxi, et al. Effects of vegetation restoration on soil stoichiometry in the eastern Hobq Desert[J]. Arid Zone Research, 2022, 39(3): 924-932. ] |
[2] | 赵晨光, 李慧瑛, 鱼腾飞, 等. 腾格里沙漠东北缘人工植被对土壤物理性质的影响[J]. 干旱区研究, 2022, 39(4): 1112-1121. |
[2] | [Zhao Chenguang, Li Huiying, Yu Tengfei, et al. Effects of artificial vegetation construction on soil physical properties in the northeastern edge of Tengger Desert[J]. Arid Zone Research, 2022, 39(4): 1112-1121. ] |
[3] | 汪海娇, 田丽慧, 张登山, 等. 青海湖东沙地不同植被恢复措施下土壤水分变化特征[J]. 干旱区研究, 2021, 38(1): 76-86. |
[3] | [Wang Haijiao, Tian Lihui, Zhang Dengshan, et al. Variation of soil moisture content in vegetation restoration area of sandy land at east shore of Qinghai Lake[J]. Arid Zone Research, 2021, 38(1): 76-86. ] |
[4] | Filipovi V, Defterdarovi J, Imnek J, et al. Estimation of vineyard soil structure and preferential flow using dye tracer, X-ray tomography, and numerical simulations[J]. Geoderma, 2020, 380: 114699. |
[5] | Cheng Ranran, Chen Qiuwen, Zhang Jianguo, et al. Soil moisture variations in response to precipitation in different vegetation types: A multi-year study in the loess hilly region in China[J]. Ecohydrology, 2020, 13(3): e2196. |
[6] | Zhang Zhishan, Xu Bingxin, Zhao Yang, et al. Long-term water balance variation after revegetation on the southeastern edge of the Tengger Desert[J]. Ecological Indicators, 2021, 131: 108216. |
[7] | Cheng Yiben, Zhan Hongbin, Yang Wenbin, et al. An ecohydrological perspective of reconstructed vegetation in the semi-arid region in drought seasons[J]. Agricultural Water Management, 2021, 243: 106488. |
[8] | Cheng Yiben, Li Yanli, Zhan Hongbin, et al. New comparative experiments of different soil types for farmland water conservation in arid regions[J]. Water, 2018, 10(3): 298. |
[9] | 李新乐, 吴波, 张建平, 等. 白刺沙包浅层土壤水分动态及其对不同降雨量的响应[J]. 生态学报, 2019, 39(15): 5701-5708. |
[9] | [Li Xinle, Wu Bo, Zhang Jianping, et al. Dynamics of shallow soil water content in Nitraria tangutorum nebkha and response to rainfall[J]. Acta Ecologica Sinica, 2019, 39(15): 5701-5708. ] |
[10] | Cheng Yiben, Yang Wenbing, Zhan Hongbin, et al. On change of soil moisture distribution with vegetation reconstruction in Mu Us Sandy Land of China, with newly designed lysimeter[J]. Frontiers in Plant Science, 2021, 12: 609529. |
[11] | 程一本, 肖洪浪, 李双. 黄土丘陵风沙区柽柳(Tamarix chinensis)林土壤水储量动态[J]. 中国沙漠, 2015, 35(2): 407-413. |
[11] | [Cheng Yiben, Xiao Honglang, Li Shuang. Soil water reserves changes in loess hilly-gully region[J]. Journal of Desert Research, 2015, 35(2): 407-413. ] |
[12] | Zhang Zhishan, Chen Yongle, Xu Binxing, et al. Topographic differentiations of biological soil crusts and hydraulic properties in fixed sand dunes, Tengger Desert[J]. Journal of Arid Land, 2015, 7(2): 205-215. |
[13] | Yang Xinghua, Yang Fan, Zhou Chenglong, et al. Improved parameterization for effect of soil moisture on threshold friction velocity for saltation activity based on observations in the Taklimakan Desert-Science Direct[J]. Geoderma, 2020, 369(C): 114322. |
[14] | 白晓, 贾小旭, 邵明安, 等. 黄土高原北部土地利用变化对长期土壤水分平衡影响模拟[J]. 水科学进展, 2021, 32(1): 109-119. |
[14] | [Bai Xiao, Jia Xiaoxu, Shao Ming’an, et al. Simulating long-term soil water balance in response to land use change in the northern China’s Loess Plateau[J]. Advances in Water Science, 2021, 32(1): 109-119. ] |
[15] | 张瑞文, 赵成义, 王丹丹, 等. 极端干旱区不同水分条件下胡杨林生态耗水特征[J]. 水土保持学报, 2019, 33(4): 270-278. |
[15] | [Zhang Ruiwen, Zhao Chengyi, Wang Dandan, et al. Ecological water consumption characteristics of Populus euphratica forest under different water conditions in extremely arid area[J]. Journal of Soil and Water Conservation, 2019, 33(4): 270-278. ] |
[16] | 王宇祥, 刘廷玺, 段利民, 等. 半干旱地区半流动沙丘水分深层渗漏量及其对降雨格局的响应[J]. 应用生态学报, 2020, 31(8): 2710-2720. |
[16] | [Wang Yuxiang, Liu Tingxi, Duan Limin, et al. Deep water leakage from semi-mobile dunes in semi-arid regions and its response to rainfall patterns[J]. Chinese Journal of Applied Ecology, 2020, 31(8): 2710-2720. ] |
[17] | 赵文智, 刘志民, 常学礼. 降水量下限引种区沙地樟子松幼林种群树高分布偏斜度和不整齐性[J]. 应用生态学报, 2002, 13(1): 6-10. |
[17] | [Zhao Wenzhi, Liu Zhimin, Chang Xueli. Skewness and inequality of height distribution of young Pinus sylvestris var. mongolica stands introduced on sandy soil with lower limited precipitation for tree survival and normal growth[J]. Chinese Journal of Applied Ecology, 2002, 13(1): 6-10. ] |
[18] | 吴际, 杨光, 韩雪莹, 等. 不同人工林对奈曼沙区土壤团聚体的影响[J]. 干旱区研究, 2022, 39(6): 1832-1841. |
[18] | [Wu Ji, Yang Guang, Han Xueying, et al. Effects of different plantations on soil aggregates in the Nayman sand region[J]. Arid Zone Research, 2022, 39(6): 1832-1841. ] |
[19] | 包慧娟, 郭佳, 闫丽. 科尔沁沙地基于生态足迹模型的沙漠化成因分析——以奈曼旗为例[J]. 干旱区资源与环境, 2010, 24(2): 126-131. |
[19] | [Bao Huijuan, Guo Jia, Yan Li. Study on ecological footprint of the human activity intensity in Horqin sandy: A case of Naiman Banner[J]. Resources and Environment in Arid Areas, 2010, 24(2): 126-131. ] |
[20] | 董佳蕊, 张桂英, 刘媛媛. 2017年奈曼旗干旱灾害分析[J]. 现代农业科技, 2018, 47(9): 241-244. |
[20] | [Dong Jiarui, Zhang Guiying, Liu Yuanyuan. Analysis on drought disaster of Naiman Banner in 2017[J]. Modern Agricultural Science and Technology, 2018, 47(9): 241-244. ] |
[21] | 李金亚. 科尔沁沙地草原沙化时空变化特征遥感监测及驱动力分析[D]. 北京: 中国农业科学院, 2014. |
[21] | [Li Jinya. Spatial-tempotal Variations and its Driving Factors of the Grassland Sandy Desertification in the Horqin Sand Land Based on Romote Sensing[D]. Beijing: Chinese Academy of Agricultural Sciences, 2014. ] |
[22] | 刘峰, 杨光, 韩雪莹, 等. 科尔沁沙地土地利用时空演变及空间自相关分析——以奈曼旗为例[J]. 西北林学院学报, 2020, 35(4): 148-157. |
[22] | [Liu Feng, Yang Guang, Han Xueying, et al. Spatial-temporal evolution of land use and spatial autocorrelation analysis in Horqin Sandy Land: A case study of Naiman Banner[J]. Journal of Northwest Forestry University, 2020, 35(4): 148-157. ] |
[23] | Jirka Simunek J, Miroslav ?ejna, Van Genuchten M Th, et al. The HYDRUS-1D software package for simulating the one-dimensional movement of water, heat, and multiple solutes in variably-saturated media[EB/OL]. USA: University of California Riverside, 2008. https://www.researchgate.net/publication/304823168. |
[24] | 杨锋, 和玉璞, 洪大林, 等. 基于Hydrus-1D模型模拟灌排调控稻田地下水补给过程[J]. 灌溉排水学报, 2021, 40(11): 90-97. |
[24] | [Yang Feng, He Yupu, Hong Dalin, et al. Effect of controlled irrigation and drainage on the capillary rise in paddy fields simulated using the Hydrus-1D model[J]. Journal of Irrigation and Drainage, 2021, 40 (11): 90-97. ] |
[25] | 周晓冰. 层状土壤入渗试验及数值模拟研究[D]. 青岛: 青岛大学, 2018. |
[25] | [Zhou Xiaobing. Layered Soil Infiltration Experiment and Numerical Simulation[D]. Qingdao: Qingdao University, 2018. ] |
[26] | 樊玉苗. 基于HYDRUS模型的农田土壤水分动态变化规律研究[D]. 沈阳: 沈阳农业大学, 2015. |
[26] | [Fan Yumiao. Simulation of Water Dynamics Using the HYDRUS Model: Based on Rain-fed Farming Land of North-east of China[D]. Shenyang: Shenyang Agricultural University, 2015. ] |
[27] | 张晓萌. 安徽淮北平原土壤水分变化特征及其与地下水转化关系研究[D]. 邯郸: 河北工程大学, 2019. |
[27] | [Zhang Xiaomeng. Variation Characteristics of Soil Moisture Variation and Its Relationship with Groundwater Transformation in Huaibei Plain of Anhui Province[D]. Handan: Hebei University of Engineering, 2019. ] |
[28] | 石春茂, 罗娅, 杨胜天, 等. 干热河谷区不同坡位土壤水分对降雨的响应特征[J]. 应用生态学报, 2022, 33(5): 1352-1362. |
[28] | [Shi Chunmao, Luo Ya, Yang Shengtian, et al. Responses of soil moisture at different slope positions to rainfall in dry-hot valley[J]. Chinese Journal of Applied Ecology, 2022, 33(5): 1352-1362. ] |
[29] | 张志强. 渭北旱塬农林复合区深根经济林对深层土壤水和深层渗漏的影响[D]. 杨凌: 西北农林科技大学, 2020. |
[29] | [Zhang Zhiqiang. Impact of Deep-rooted Economic Forest on Deep Soil Water Storage and Deep Drainage of Agri-forestry System in Weibei Tableland[D]. Yangling: Northwest A & F University, 2020. ] |
[30] | Zhang Zhishan, Liu Lichao, Li Xinrong, et al. Evaporation properties of a revegetated area of the Tengger Desert, North China[J]. Journal of Arid Environments, 2008, 72(6): 964-973. |
[31] | 吴丽丽, 程一本, 杨文斌, 等. 毛乌素沙地流动沙丘不同深度土壤渗漏特征[J]. 生态学报, 2018, 38(22): 7960-7967. |
[31] | [Wu Lili, Cheng Yiben, Yang Wenbin, et al. Analysis of the soil percolation characteristics at different depths of a mobile sand dune in the Mu Us sandy land[J]. Acta Ecologica Sinica, 2018, 38(22): 7960-7967. ] |
[32] | 廉泓林, 李卫, 冯金超, 等. 科尔沁沙地典型固沙人工林地土壤水分时空特征及其对环境因子的响应[J]. 生态学报, 2021, 41(20): 8256-8265. |
[32] | [Lian Honglin, Li Wei, Feng Jinchao, et al. Spatiotemporal characteristics of soil moisture and its responses to environmental factors in two typical sand-fixing plantations at the south edge of Horqin Sandy Land[J]. Acta Ecologica Sinica, 2021, 41(20): 8256-8265. ] |
[33] | 李琦, 李发东, 张秋英, 等. 基于HYDRUS模型的华北平原小麦种植区水盐运移模拟[J]. 中国生态农业学报, 2021, 29(6): 1085-1094. |
[33] | [Li Qi, Li Fadong, Zhang Qiuying, et al. Water and salt transport simulation in the wheat growing area of the North China Plain based on HYDRUS model[J]. Chinese Journal of Eco-Agriculture, 2021, 29(6): 1085-1094. ] |
[34] | 李阳明. 南方典型红壤坡地土壤水分运移特征与模拟[D]. 西安: 长安大学, 2021. |
[34] | [Li Yangming. Characteristics and Simulation of Soil Water Transport in Typical Red Soil Sloping Fields in Southern China[D]. Xi’an: Chang’an University, 2021. ] |
[35] | Mauricio, Galleguillos, Frédéric, et al. Estimation of actual evapotranspiration over a rainfed vineyard using a 1-D water transfer model: A case study within a Mediterranean watershed[J]. Agricultural Water Management, 2017, 184: 67-76. |
[36] | 李冰冰, 王云强, 李志. HYDRUS-1D模型模拟渭北旱塬深剖面土壤水分的适用性[J]. 应用生态学报, 2019, 30(2): 398-404. |
[36] | [Li Bingbing, Wang Yunqiang, Li Zhi. Applicability of HYDRUS-1D model in simulating the soil moisture in deep profiles on the Weibei rainfed highland, China[J]. Chinese Journal of Applied Ecology, 2019, 30(2): 398-404. ] |
/
〈 | 〉 |