植物生态

典型荒漠灌木叶片功能性状特征随降水梯度的变化研究

  • 李瑞 ,
  • 单立山 ,
  • 解婷婷 ,
  • 马丽 ,
  • 杨洁 ,
  • 李全刚
展开
  • 甘肃农业大学林学院,甘肃 兰州 730070
李瑞(1996-),男,硕士研究生,主要从事荒漠植物生理生态研究. E-mail: 1426035580@qq.com

收稿日期: 2022-08-12

  修回日期: 2022-09-30

  网络出版日期: 2023-03-31

基金资助

甘肃农业大学青年导师扶持基金(GAU-QDFC-2022-08);国家自然科学基金(32160253);国家自然科学基金(31960245);甘肃省重点研发计划项目(22YF7FA117);甘肃省自然科学基金(22JR5RA850);对发展中国家常规性科技援助项目(KY202002011)

Variation in the leaf functional traits of typical desert shrubs under precipitation gradient

  • Rui LI ,
  • Lishan SHAN ,
  • Tingting XIE ,
  • Li MA ,
  • Jie YANG ,
  • Quangang LI
Expand
  • College of Forestry, Gansu Agricultural University, Lanzhou 730070, Gansu, China

Received date: 2022-08-12

  Revised date: 2022-09-30

  Online published: 2023-03-31

摘要

自然降水是干旱地区植被重要的水分来源,为了探明荒漠灌木叶片在降水变化的应对对策,以典型荒漠灌木为研究对象,测定不同降水条件下叶片形态性状和化学计量指标,分析其叶片功能性状的总体特征及各个功能性状与环境因子的关系。结果表明:(1) 红砂(Reaumuria soongorica)叶片肉质化程度和含水量随自然降水量的减少呈逐渐增大的趋势;盐爪爪(Kalidium foliatum)叶片组织密度随自然降水量的减少整体呈增大的趋势;(2) 红砂和白刺(Nitraria tangutorum)C含量、白刺和珍珠猪毛菜(Salsola passerina)叶片N含量随自然降水量的减少整体呈增大的趋势;珍珠猪毛菜和盐爪爪叶片N:P均小于14,即其在生长发育中主要受氮素限制;(3) 红砂、白刺和盐爪爪叶片组织密度与年均降水量呈正相关关系;红砂、白刺的比叶面积与海拔呈负相关关系,红砂、白刺、珍珠猪毛菜的P含量与海拔呈负相关关系。综上所述,在干旱环境中,不同的植物表现出不同的生态适应策略,其中盐爪爪通过减小比叶面积、增加叶组织密度,白刺和珍珠猪毛菜通过增加叶片N含量,红砂通过增加叶片的肉质化程度和含水量等来适应干旱少雨的荒漠环境;年均降水量和海拔是影响植物生长发育的主要限制环境因子。

本文引用格式

李瑞 , 单立山 , 解婷婷 , 马丽 , 杨洁 , 李全刚 . 典型荒漠灌木叶片功能性状特征随降水梯度的变化研究[J]. 干旱区研究, 2023 , 40(3) : 425 -435 . DOI: 10.13866/j.azr.2023.03.09

Abstract

Natural precipitation is an important source of water for vegetation in arid areas. To explore the coping methods of desert shrubs under different precipitation conditions, this study selected typical desert shrubs as subject and determined their leaf morphological traits and stoichiomental characteristics under different precipitation condition. The overall characteristics of leaf functional traits and the relationship between individual functional properties and environmental factors were also analyzed. Results showed that (1) with the decrease in natural precipitation, the degree of fleshiness and water content of leaves of Reaumuria soongorica increased gradually and the tissue density of Kalidium foliatum increased. (2) Meanwhile, the C contents in the leaves of R. soongorica and Nitraria tangutorum and the N contents in the leaves of N. tangutorum and Salsola passerina showed an overall increasing trend with the increase in drought stress. In addition, the leaf N:P ratios of S. passerina and K. foliatum were all less than 14, indicating that the growth and development of these species were mainly restricted by nitrogen. (3) The leaf tissue density of R. soongorica, N. tangutorum, and K. foliatum was positively correlated with the average annual precipitation. The specific leaf area of R. soongorica and N. tangutorum and the P content of R soongorica, N. tangutorum, and S. passerina were negatively correlated with altitude. In arid environments, different plants exhibit different ecological adaptation strategies. To adapt to the desert environment of drought and less rainfall, K. foliatum reduces its specific leaf area and increases its tissue density, N. tangutorum increases the N content of its leaves, and R. soongorica increases the degree of fleshiness and water content of its leaves. Average annual precipitation and altitude are the main limiting factors affecting their growth and development.

参考文献

[1] Cornelissen J H C, Lavorel S, Garnier E, et al. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide[J]. Australian Journal of Botany, 2003, 51(4): 335-380.
[2] Reich P B, Wright I J, Cavender-Bares J, et al. The evolution of plant functional variation: Traits, spectra, and strategies[J]. International Journal of Plant Sciences, 2003, 164(77): 143-164.
[3] 毛伟, 李玉霖, 张铜会, 等. 不同尺度生态学中植物叶性状研究概述[J]. 中国沙漠, 2012, 32(1): 33-41.
[3] [Mao Wei, Li Yuling, Zhang Tonghui, et al. Research advances of plant leaf traits at different ecology scales[J]. Journal of Desert Research, 2012, 32(1): 33-41.]
[4] Sack L, Scoffoni C, John G P, et al. How do leaf veins influence the worldwide leaf economic spectrum? review and synthesis[J]. Journal of Experimental Botany, 2013, 64(13): 4053-4080.
[5] 苏培玺, 严巧娣. 内陆黑河流域植物稳定碳同位素变化及其指示意义[J]. 生态学报, 2008, 28(4): 1616-1624.
[5] [Su Peixi, Yan Qiaodi. Stable carbon isotope variation in plants and their indicating significances along the inland Heihe River basin of northwestern China[J]. Acta Ecologica Sinica, 2008, 28(4): 1616-1624.]
[6] Westoby M. A leaf-height-seed (LHS) plant ecology strategy scheme[J]. Plant Soil, 1998, 199(2): 213-227.
[7] 栾志慧. 植物子叶生长及其功能性状研究[D]. 长春: 东北师范大学, 2015.
[7] [Luan Zhihui. Study on Plant Cotyledon Growth and Functional Traits[D]. Changchun: Northeast Normal University, 2015.]
[8] 王常顺, 汪诗平. 植物叶片性状对气候变化的响应研究进展[J]. 植物生态学报, 2015, 39(2): 206-216.
[8] [Wang Changshun, Wang Shiping. A review of research on responses of leaf traits to climate change[J]. Chinese Journal of Plant Ecology, 2015, 39(2): 206-216.]
[9] Haase P, Pugnaire F I, Clark S C, et al. Environmental control of canopy dynamics and photosynthetic rate in the evergreen tussock grass Stipa tenacissima[J]. Plant Ecology, 1999, 145(2), 327-339.
[10] 陈昌笃. 中国荒漠的主要类型与经济开发[J]. 植物生态学与地植物学学报, 1987, 11(2): 81-91.
[10] [Chen Changdu. Types of deserts in china and their economic exploitation[J]. Acta Phytoecologica Et Geobotanica Sinica, 1987, 11(2): 81-91.]
[11] 董雪, 辛智鸣, 张冉浩, 等. 沙冬青种子形态和比叶面积沿降水梯度的变化特征[J]. 干旱区资源与环境, 2019, 33(12): 174-180.
[11] [Dong Xue, Xin Zhiming, Zhang Ranghao, et al. Variation in seed morphology and specific leaf area of Ammopiptanthus mongolicus along precipitation gradient[J]. Journal of Arid Land Resources and Environment, 2019, 33(12): 174-180.]
[12] 焦亮, 关雪, 刘雪蕊, 等. 内陆河湿地芦苇叶功能性状特征及其对土壤环境因子的响应[J]. 干旱区研究, 2020, 37(1): 202-211.
[12] [Jiao Liang, Guan Xue, Liu Xuerui, et al. Functional traits of Phragmites australis leaves and response to soil environmental factors in inland river wetland[J]. Arid Zone Research, 2020, 37(1): 202-211.]
[13] 徐浩然, 俞富洋, 贾聪慧, 等. 两种灌丛化草原小叶锦鸡儿的叶片化学计量特征[J]. 草地学报, 2021, 29(10): 2191-2199.
[13] [Xu Haoran, Yu Fuyang, Jia Conghui, et al. Leaf stoichiometric traits of Caragana microphylla in the shrub encroached grassland[J]. Acta Agrestia Sinica, 2021, 29(10): 2191-2199.]
[14] 孙晶, 任雯, 杜澜, 等. 不同降雨频次对粗枝猪毛菜生育期化学计量特征的影响[J]. 干旱区研究, 2021, 38(4): 1094-1103.
[14] [Sun Jing, Ren Wen, Du Lan, et al. Influence on stoichiometric characteristics during the growth period of Salsola subcrassa M. Pop. under different precipitation frequencies[J]. Arid Zone Research, 2021, 38(4): 1094-1103.]
[15] 吕湘芳, 李利, 徐新文, 等. 准噶尔盆地4种盐生植物耐盐机制分析[J]. 干旱区研究, 2010, 27(1): 97-101.
[15] [Lv Xiangfang, Xu Xinwen, et al. Difference of salt tolerance of four halophytes in salinized desert in the Junggar Basin[J]. Arid Zone Research, 2010, 27(1): 97-101.]
[16] 李晓兰, 李雪华, 蒋德明, 等. 科尔沁沙地22种菊科草本植物叶片形态特征研究[J]. 生态学杂志, 2005, 24(12): 1397-1401.
[16] [Li Xiaolan, Li Xuehua, Jiang Deming, et al. Leaf morphological characters of 22 Compositae herbaceous species in Horqin sandy land[J]. Chinese Journal of Ecology, 2005, 24(12): 1397-1401.]
[17] 王珊, 单立山, 李毅, 等. 降水变化对红砂-珍珠碳、氮、磷化学计量特征的影响[J]. 西北植物学报, 2020, 40(2): 335-344.
[17] [Wang Shan, Shan Lishan, Li Yi, et al. Effect of precipitation on the stoichiometric characteristics of carbon, nitrogen and phosphorus of Reaumuria soongorica and Salsola passerina[J]. Acta Botanica Boreali-Occidentalia Sinica, 2020, 40(2): 335-344.]
[18] 宝乐, 刘艳红. 东灵山地区不同森林群落叶功能性状比较[J]. 生态学报, 2009, 29(7): 3692-3703.
[18] [Bao Le, Liu Yanhong. Comparison of leaf functional traits in different forest communities in Mt. Dongling of Beijing[J]. Acta Ecologica Sinica, 2009, 29(7): 3692-3703.]
[19] 李永华, 卢琦, 吴波, 等. 干旱区叶片形态特征与植物响应和适应的关系[J]. 植物生态学报, 2012, 36(1): 88-98.
[19] [Li Yonghua, Lu Qi, Wu Bo, et al. A review of leaf morphology plasticity linked to plant response and adaptation characteristics in arid ecosystems[J]. Chinese Journal of Plant Ecology, 2012, 36(1): 88-98.]
[20] Nicotra A B, Hermes J P, Jones C S, et al. Geographic variation and plasticity to water and nutrients in Pelargonium austral[J]. New Phytol, 2007, 176(1): 136-149.
[21] Cunningham S A, Summerhayes B, Westoby M. Evolutionary divergences in leaf structure and chemistry, comparing rainfall and soil nutrient gradients[J]. Ecological Monographs, 1999, 69(40): 569-588.
[22] Ohashi Y, Nakayama N, Saneoka H, et al. Effects of drought stress on photosynthetic gas exchange, chlorophyll fluorescence and stem diameter of soybean plants[J]. Biologia Plantarum, 2006, 50(1): 138-141.
[23] 苟伟. 河西走廊荒漠植物叶片性状及其功能多样性研究[D]. 兰州: 兰州理工大学. 2020.
[23] [Gou Wei. The Research on Leaf Characters and Functional Diversity of Desert Plants in Hexi Corridor[D]. Lanzhou: Lanzhou University of Technology, 2020.]
[24] 陈小丽, 陈亚宁, 陈亚鹏. 黑河下游荒漠河岸林植物水分利用关系研究[J]. 中国生态农业学报, 2014, 22(8): 972-979.
[24] [Chen Xiaoli, Chen Yaning, Chen Yapeng. Relationship among water use of different plants in Heihe River riparian forests[J]. Chinese Journal of Eco-Agriculture, 2014, 22(8): 972-979.]
[25] 李玉霖, 崔建垣, 苏永中, 等. 不同沙丘生境主要植物比叶面积和叶干物质含量的比较[J]. 生态学报, 2005, 25(2): 304-311.
[25] [Li Yulin, Cui Jianheng, Su Yongzhong, et al. Specific leaf area and leaf dry matter content of some plants in different dune habitats[J]. Acta Ecologica Sinica, 2005, 25(2): 304-311.]
[26] Grime J P, Thompson K, Hunt R, et al. Integrated screening validates primary axes of specialization in plants[J]. Oikos, 1997, 79(2): 259-281.
[27] Meziane D, Shipley B. Interacting components of interspecific relative growth rate: Constancy and change under differing conditions of light and nutrient supply[J]. Functional Ecology, 1999, 13(5): 611-622.
[28] Dijkstra P, Kuiper P. Effects of exogenously applied growth regulators on shoot growth of inbred lines of Plantago major differing in relative growth rate: Differential response to gibberellic acid and (2-chloroethyl)-trimethyl-ammonium chloride[J]. Physiologia Plantarum, 1989, 113(3): 283-290.
[29] Craine J M, Froehle J, Tilman D G, et al. The relationships among root and leaf traits of 76 grassland species and relative abundance along fertility and disturbance gradients[J]. Oikos, 2001, 93(2): 274-285.
[30] Niinemets U. Is there a species spectrum within the world-wide leaf economics spectrum major variations in leaf functional traits in the Mediterranean sclerophyll Quercus ilex[J]. New Phytologist, 2015, 205(1): 79-96.
[31] 何维明. 水分因素对沙地柏实生苗水分和生长特征的影响[J]. 植物生态学报, 2001, 25(1): 11-16.
[31] [He Weiming. Effects of water factor on hydraulic and growth characteristics of Sabina vulgaris seedlings[J]. Chinese Journal of Plant Ecology, 2001, 25(1): 11-16.]
[32] Dawson T P, Curran P J. A new technique for interpolating the reflectance red edge position[J]. International Journal of Remote Sensing, 1998, 19(11): 2133-2139.
[33] Gusewell S. N:P ratios in terrestrial plants: Variation and functional significance[J]. New Phytologist, 2004, 164(2): 243-266.
[34] 程滨, 赵永军, 张文广, 等. 生态化学计量学研究进展[J]. 生态学报, 2010, 30(6): 1628-1637.
[34] [Cheng Bin, Zhao Yongjun, Zhang Wenguang, et al. The research advances and prospect of ecological stoichiometry[J]. Acta Ecologica Sinica, 2010, 30(6): 1628-1637.]
[35] 王凯, 沈潮, 孙冰, 等. 干旱胁迫对科尔沁沙地榆树幼苗C、N、P化学计量特征的影响[J]. 应用生态学报, 2018, 29(7): 2286-2294.
[35] [Wang Kai, Shen Chao, Sun Bing, et al. Effects of drought stress on C, N and P stoichiometry of Ulmus pumila seedlings in Horqin sandy land, China[J]. Chinese Journal of Applied Ecology, 2018, 29(7): 2286-2294.]
[36] Seligman N G, Sinclair T R. Global environment change and simulated forage quality of wheat II. Water and nitrogen stress[J]. Field Crops Research, 1995, 40(1): 29-37.
[37] Prentice I C, Meng T, Wang H, et al. Evidence of a universal scaling relationship for leaf CO2 drawdown along an aridity gradient[J]. New Phytologist, 2011, 190(1): 169-180.
[38] 张慧文, 马剑英, 孙伟, 等. 不同海拔天山云杉叶功能性状及其与土壤因子的关系[J]. 生态学报, 2010, 30(21): 5747-5758.
[38] [Zhang Huiwen, Ma Jianying, Sun Wei, et al. Altitudinal variation in functional traits of Picea schrenkiana var. tianschanica and their relationship to soil factors in Tianshan Mountains, Northwest China[J]. Acta Ecologica Sinica, 2010, 30(21): 5747-5758.]
[39] 贺合亮, 阳小成, 王东, 等. 青藏高原东部窄叶鲜卑花灌丛土壤C、N、P生态化学计量学特征[J]. 应用与环境生物学报, 2015, 21(6): 1128-1135.
[39] [He Heliang, Yang Xiaocheng, Wang Dong, et al. Ecological stoichiometric characteristics of soil carbon, nitrogen and phosphorus of Sibiraea angustata shrub in eastern Qinghai-Tibetan Plateau[J]. Chinese Journal of Applied and Environmental Biology, 2015, 21(6): 1128-1135.]
[40] 王绍强, 于贵瑞. 生态系统碳氮磷元素的生态化学计量学特征[J]. 生态学报, 2008, 28(8): 3937-3947.
[40] [Wang Shaoqiang, Yu Guirui. Ecological stoichiometry characteristics of ecosystem carbon, nitrogen and phosphorus elements[J]. Acta Ecologica Sinica, 2008, 28(8): 3937-3947.]
[41] 栗忠飞, 郭盘江, 刘文胜, 等. 哀牢山常绿阔叶林幼树C、N、P生态化学计量特征[J]. 东北林业大学学报, 2013, 41(4): 22-26.
[41] [Li Zhongfei, Guo Panjiang, Liu Wensheng, et al. C, N and P stoichiometry of young trees in montane moist evergreen broad-Leaved forest of Ailao mountains[J]. Journal of Northeast Forestry University, 2013, 41(4): 22-26.]
[42] Liu X Y, Koba K, Koyama L A, et al. Nitrate is an important nitrogen source for arctic tundra plants[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(13): 3398-3403.
[43] 刘万德, 苏建荣, 李帅锋, 等. 云南普洱季风常绿阔叶林演替系列植物和土壤C、N、P化学计量特征[J]. 生态学报, 2010, 30(23): 6581-6590.
[43] [Liu Wande, Su Jianrong, Li Shuaifeng, et al. Stoichiometry study of C, N and P in plant and soil at different successional stages of monsoon evergreen broad-leaved forest in Pu’er, Yunnan Province[J]. Acta Ecologica Sinica, 2010, 30(23): 6581-6590.]
[44] 张剑, 包雅兰, 宿力, 等. 敦煌阳关湿地芦苇叶性状对土壤水分的响应[J]. 生态学报, 2019, 39(20): 7670-7678.
[44] [Zhang Jian, Bao Yalan, Su Li, et al. Response of Phragmites australis leaf traits to soil moisture in Yangguan wetland, Dunhuang[J]. Acta Ecologica Sinica, 2019, 39(20): 7670-7678.]
[45] 王鑫, 杨磊, 赵倩, 等. 半干旱黄土小流域草地群落功能性状空间异质性及环境驱动[J]. 草业科学, 2019, 36(9): 2201-2211.
[45] [Wang Xin, Yang Lei, Zhao Qian, et al. Spatial heterogeneity and environmental drivers of grassland community functional traits in the semi-arid loess small watershed[J]. Pratacultural Science, 2019, 36(9): 2201-2211.]
[46] 冯秋红, 程瑞梅, 史作民, 等. 巴郎山异型柳叶片功能性状及性状间关系对海拔的响应[J]. 生态学报, 2013, 33(9): 2712-2718.
[46] [Feng Qiuhong, Cheng Ruimei, Shi Zuomin, et al. Response of leaf functional traits and the relationships among them to altitude of Salix dissa in Balang Mountain[J]. Acta Ecologica Sinica, 2013, 33(9): 2712-2718.]
[47] 王晶媛, 张慧, 虞木奎, 等. 区域尺度上麻栎叶片性状对环境因子的响应规律[J]. 生态环境学报, 2017, 26(5): 754-762.
[47] [Wang Jingyuan, Zhang Hui, Yu Mukui, et al. Response of leaf traits of Quercus acutissima to environmental factors at regional scale[J]. Ecology and Environmental Sciences, 2017, 26(5): 754-762.]
[48] 董莉莉, 刘世荣, 史作民, 等. 中国南北样带上栲属树种叶功能性状与环境因子的关系[J]. 林业科学研究, 2009, 22(4): 463-469.
[48] [Dong Lili, Liu Shirong, Shi Zuomin, et al. Relationships between leaf traits of Castanopsis species and the environm ental factors in the north-south transect of eastern China[J]. Forest Research, 2009, 22(4): 463-469.]
[49] 张金伟. 降雨量与氮沉降及其耦合对羊草主要叶经济性状的影响[D]. 长春: 东北师范大学, 2016.
[49] [Zhang Jinwei. Impacts of Rainfall Regime, Nitrogen Deposition and Their Coupling on Leaf Economic Traits in Leymus chinensis[D]. Changchun: Northeast Normal University, 2016.]
[50] Korner C. The nutritional status of plants from high altitudes: A worldwide comparison[J]. Oecologia, 1989, 81(3): 379-391.
[51] Luo T X, Luo J, Pan Y D. Leaf traits and associated ecosystem characteristics across subtropical and timberline forests in the Gongga Mountains, Eastern Tibetan Plateau[J]. Oecologia, 2005, 142(2): 261-273.
文章导航

/