水土资源

灌溉水矿化度对棉田土壤呼吸速率的影响

  • 李燕强 ,
  • 王振华 ,
  • 叶含春 ,
  • 宋利兵 ,
  • 刘健 ,
  • 温越 ,
  • 武小荻
展开
  • 1.石河子大学水利建筑工程学院,新疆 石河子 832000
    2.现代节水灌溉兵团重点实验室,新疆 石河子 832000
    3.农业农村部西北绿洲节水农业重点实验室,新疆 石河子 832000
李燕强(1996-),男,硕士研究生,主要从事干旱区节水灌溉理论与技术研究. E-mail: 1714072730@qq.com

收稿日期: 2022-05-16

  修回日期: 2022-08-17

  网络出版日期: 2023-03-31

基金资助

国家自然科学基金项目(51869028);兵团重点领域创新团队项目(2019CB004)

Effect of the salinity of irrigation water on soil respiration rate in cotton field

  • Yanqiang LI ,
  • Zhenhua WANG ,
  • Hanchun YE ,
  • Libing SONG ,
  • Jian LIU ,
  • Yue WEN ,
  • Xiaodi WU
Expand
  • 1. College of Water Conservancy & Architectural Engineering, Shihezi University, Shihezi 832000, Xinjiang, China
    2. Key Laboratory of Modern Water-Saving Irrigation of Xinjiang Production & Construction Group, Shihezi 832000, Xinjiang, China
    3. Key Laboratory of Northwest Oasis Water-Saving Agriculture, Ministry of Agriculture and Rural Affairs, Shihezi 832000, Xinjiang, China

Received date: 2022-05-16

  Revised date: 2022-08-17

  Online published: 2023-03-31

摘要

为探究不同灌溉水矿化度对棉田土壤呼吸速率的影响,设置了4个灌溉水矿化度,分别为0.85 g·L-1(CK,当地灌溉水矿化度)、3 g·L-1(S1)、5 g·L-1(S2)和8 g·L-1(S3),在新疆进行了膜下滴灌棉花大田试验。在棉花生育期,每月采集两次土壤呼吸速率值(Rs),并同时监测土壤温度(ST)、含水率(SWC)、电导率(EC)、硝态氮含量($\mathrm{NO}_{3}^{-}-\mathrm{N}$)、铵态氮含量($\mathrm{NH}_{4}^{+}-\mathrm{N}$),运用通径分析研究了灌溉水矿化度下土壤参数对土壤呼吸速率的影响。结果表明:微咸水灌溉(S1和S2)在一定程度上提高了土壤含水率、电导率和铵态氮含量;咸水灌溉(S3)显著增加了土壤水分和盐分,并降低了土壤硝态氮含量;灌溉水矿化度的增加会减弱土壤呼吸速率。土壤的水分和温度与呼吸速率的相关性,随灌溉水矿化度的增加而呈减弱趋势。通过运用二次函数式来表示0~10 cm的土层温度对土壤呼吸速率的响应(R2=0.669,P<0.001),得出土壤呼吸速率最适宜的土壤温度为26.9 ℃。咸水灌溉下,含土壤温度、电导率、硝态氮含量的逐步回归方程可以解释土壤呼吸速率变化的85%。综上,利用3 g·L-1的灌溉水进行膜下滴灌,能够在不显著增加土壤含盐量的基础上,降低土壤呼吸速率,减少农田碳排放量,可以为新疆微咸水资源的开发利用提供理论支撑。

本文引用格式

李燕强 , 王振华 , 叶含春 , 宋利兵 , 刘健 , 温越 , 武小荻 . 灌溉水矿化度对棉田土壤呼吸速率的影响[J]. 干旱区研究, 2023 , 40(3) : 392 -402 . DOI: 10.13866/j.azr.2023.03.06

Abstract

Four irrigation water salinity levels, namely, 0.85 g·L-1 (CK, local irrigation water salinity), 3 g·L-1 (S1), 5g·L-1 (S2), and 8 g·L-1 (S3), were examined to explore the effects of different salinity levels on soil respiration rate in cotton fields. A cotton field experiment with drip irrigation under film was carried out in Xinjiang. During the growth period of cotton, soil respiration rate (Rs) was recorded twice a month, along with soil temperature (ST), water content, electrical conductivity (EC), nitrate nitrogen content ($\mathrm{NO}_{3}^{-}-\mathrm{N}$) and ammonium nitrogen content ($\mathrm{NH}_{4}^{+}-\mathrm{N}$). The influence of soil parameters on soil respiration rate under different salinities of irrigation water was studied by path analysis. Results showed that brackish water irrigation (S1 and S2) increased soil moisture content, EC and ammonium nitrogen content to a certain extent. Salt water irrigation (S3) significantly increased soil moisture and salinity, and decreased soil nitrate nitrogen content. The increase in the salinity of irrigation water decreased the soil respiration rate. The correlation between soil moisture and temperature and respiration rate decreased with the increase in the salinity of irrigation water. The quadratic function was used to represent the response of ST in 0-10 cm soil layer to soil respiration rate (R2=0.669, P<0.001). The optimal ST for soil respiration rate was 26.9 ℃. Under saline irrigation, the stepped-regression equation containing ST, conductivity, and nitrate nitrogen content could explain 85% of the variation of soil respiration rate. In conclusion, the use of 3 g·L-1 irrigation water for drip irrigation under film can reduce soil respiration rate and farmland carbon emissions without significantly increasing soil salt content. This work provides theoretical support for the development and utilization of brackish water resources in Xinjiang.

参考文献

[1] 梁亚军, 王俊铎, 郑巨云, 等. 新疆2021年棉花生产概况及存在问题与策略[J]. 棉花科学, 2022, 44(2): 3-8.
[1] [Liang Yajun, Wang Junduo, Zheng Juyun, et al. Problems and strategies of cotton production in Xinjiang in 2021[J]. Cotton Science, 2022, 44(2): 3-8.]
[2] 马涛, 刘九夫, 彭安帮, 等. 中国非常规水资源开发利用进展[J]. 水科学进展, 2020, 31(6): 960-969.
[2] [Ma Tao, Liu Jiufu, Peng Anbang, et al. Progress in development and utilization of non-conventional water resources in China[J]. Advances in Water Science, 2020, 31(6): 960-969.]
[3] 刘雪艳, 丁邦新, 白云岗, 等. 微咸水膜下滴灌对棉花生长及产量的影响[J]. 干旱区研究, 2020, 37(6): 1627-1634.
[3] [Liu Xueyan, Ding Bangxin, Bai Yungang, et al. Effects of drip irrigation under brackish water film on cotton growth and yield[J]. Arid Zone Research, 2020, 37(6): 1627-1634.]
[4] 胡雅琪, 吴文勇. 中国农业非常规水资源灌溉现状与发展策略[J]. 中国工程科学, 2018, 20(5): 69-76.
[4] [Hu Yaqi, Wu Wenyong. Review and development strategy of irrigation with unconventional water resources in China[J]. Strategic Study of CAE, 2018, 20(5): 69-76.]
[5] 刘雪艳, 丁邦新, 白云岗. 微咸水膜下滴灌对土壤盐分及棉花产量的影响[J]. 干旱区研究, 2020, 37(2): 410-417.
[5] [Liu Xueyan, Ding Bangxin, Bai Yungang, et al. Effects of drip irrigation under brackish water film on soil salinity and cotton yield[J]. Arid Zone Research, 2020, 37(2): 410-417.]
[6] 邹其会, 任树梅, 杨培岭, 等. 再生水与微咸水灌溉对土壤温室气体排放的影响研究[J]. 灌溉排水学报, 2014, 33(2): 80-82.
[6] [Zou Qihui, Ren Shumei, Yang Peiling, et al. Effects of water irrigation and brackish water irrigation on soil greenhouse gas emissions[J]. Journal of Irrigation and Drainage, 2014, 33(2): 80-82.]
[7] 李晓菡, 邹俊亮, 武菊英, 等. 土壤呼吸和有机碳对增温的响应及其影响因素分析[J]. 地球与环境, 2021, 50(4): 471-480.
[7] [Li Xiaohan, Zou Junliang, Wu Juying, et al. Response of soil respiration and organic carbon to warming and their influencing factors[J]. Earth and Environment, 2021, 50(4): 471-480.]
[8] 陈龙飞, 何志斌, 明姣, 等. 冻融作用对土壤呼吸影响的研究进展[J]. 干旱区研究, 2020, 37(4): 917-924.
[8] [Chen Longfei, He Zhibin, Ming Jiao, et al. Research progress of effects of freeze-thaw on soil respiration[J]. Arid Zone Research, 2020, 37(4): 917-924.]
[9] Tu C, Li F D, Qiao Y F, et al. Effect of experimental warming on soil respiration under conventional tillage and no-tillage farmland in the North China Plain[J]. Journal of Integrative Agriculture, 2017, 16(4): 967-979.
[10] 马丽娟, 张慧敏, 侯振安, 等. 长期咸水滴灌对土壤氨氧化微生物丰度和群落结构的影响[J]. 农业环境科学学报, 2019, 38(12): 2797-2807.
[10] [Ma Lijuan, Zhang Huimin, Hou Zhen’an, et al. Effects of long-term saline water drip irrigation on the abundance and community structure of ammonia oxidizers[J]. Journal of Agro-Environment Science, 2019, 38(12): 2797-2807.]
[11] Charis-Konstantina Kontopoulou, Dimitrios Bilalis, Pappa Valentini A, et al. Effects of organic farming practices and salinity on yield and greenhouse gas emissions from a common bean crop[J]. Scientia Horticulturae, 2015, 183: 48-57.
[12] Rath K M, Rousk J. Salt effects on the soil microbial decomposer community and their role in organic carbon cycling: A review[J]. Soil Biology and Biochemistry, 2015, 81: 108-123.
[13] Cheng M H, Wang H D, Fan J L, et al. Crop yield and water productivity under salty water irrigation: A global meta-analysis[J]. Agricultural Water Management, 2021, 256: 107105.
[14] 魏琛琛, 任树梅, 徐子昂, 等. 灌溉水盐分和灌水量对温室气体排放与玉米生长的影响[J]. 农业机械学报, 2021, 52(7): 251-260.
[14] [Wei Chenchen, Ren Shumei, Xu Zi’ang, et al. Effects of irrigation water salinity and irrigation amount on greenhouse gas emission and spring maize growth[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(7): 251-260.]
[15] Wei C C, Ren S M, Yang P J, et al. Effects of irrigation methods and salinity on CO2 emissions from farmland soil during growth and fallow periods[J]. Science of The Total Environment, 2021, 752: 141639.
[16] Zong R, Wang Z H, Wu Q, et al. Characteristics of carbon emissions in cotton fields under mulched drip irrigation[J]. Agricultural Water Management, 2020, 231: 105992.
[17] 周启星, 李晓晶, 欧阳少虎. 关于“碳中和生物”环境科学的新概念与研究展望[J]. 农业环境科学学报, 2022, 41(1): 1-9.
[17] [Zhou Qixing, Li Xiaojing, Ouyang Shaohu. Carbon-neutral organisms as the new concept in environmental sciences and research prospects[J]. Journal of Agro-Environment Science, 2022, 41(1): 1-9.]
[18] 朱延凯, 王振华, 李文昊. 不同盐胁迫对滴灌棉花生理生长及产量的影响[J]. 水土保持学报, 2018, 32(2): 298-305.
[18] [Zhu Yankai, Wang Zhenhua, Li Wenhao. Effects of different salt stress on physiological growth and yield of cotton under drip irrigation[J]. Journal of Soil and Water Conservation, 2018, 32(2): 298-305.]
[19] 赵波, 王振华, 李文昊. 滴灌方式及定额对北疆冬灌棉田土壤水盐分布及次年棉花生长的影响[J]. 农业工程学报, 2016, 32(6): 139-148.
[19] [Zhao Bo, Wang Zhenhua, Li Wenhao. Effects of winter drip irrigation mode and quota on water and salt distribution in cotton field soil and cotton growth next year in northern Xinjiang[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(6): 139-148.]
[20] 张前兵, 杨玲, 孙兵, 等. 干旱区灌溉及施肥措施下棉田土壤的呼吸特征[J]. 农业工程学报, 2012, 28(14): 77-84.
[20] [Zhang Qianbing, Yang Ling, Sun Bing, et al. Respiration characteristics of cotton soil under irrigation and fertilization measures inarid region[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(14): 77-84.]
[21] 郑恩楠, 朱银浩, 胡建宇, 等. 水肥耦合对水稻生长土壤呼吸与无机氮的影响[J]. 农业机械学报, 2021, 52(9): 272-279.
[21] [Zheng Ennan, Zhu Yinhao, Hu Jianyu, et al. Coupling of water and fertilizer methods on growth of rice, soil respiration and inorganic nitrogen[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(9): 272-279.]
[22] Qiu W H, Liu J S, LI B Y, et al. N2O and CO2 emissions from a dryland wheat cropping system with long-term N fertilization and their relationships with soil C, N, and bacterial community[J]. Environmental Science and Pollution Research, 2020, 27(8): 8673-8683.
[23] 王新源, 李玉霖, 赵学勇, 等. 干旱半干旱区不同环境因素对土壤呼吸影响研究进展[J]. 生态学报, 2012, 32(15): 4890-4901.
[23] [Wang Xinyuan, Li Yulin, Zhao Xueyong, et al. Responses of soil respiration to different environment factors in semi-arid and arid areas[J]. Acta Ecologica Sinica, 2012, 32(15): 4890-4901.]
[24] 周慧, 史海滨, 张文聪, 等. 有机无机肥配施对盐渍化土壤微生物量和呼吸的影响[J]. 农业工程学报, 2021, 37(15): 86-95.
[24] [Zhou Hui, Shi Haibin, Zhang Wencong, et al. Effects of the combined application of organic and inorganic fertilizers on soil microbial biomass and soil respiration in saline soil[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(15): 86-95.]
[25] 董倩倩, 范文波, 许忠宇, 等. 滴灌水量和土壤温度对桶栽棉花土壤剖面CO2浓度影响的试验研究[J]. 干旱区研究, 2020, 37(3): 636-644.
[25] [Dong Qianqian, Fan Wenbo, Xu Zhongyu, et al. Effects of drip irrigation and soil temperature on CO2 concentration in soil profile of barrel cotton[J]. Arid Zone Research, 2020, 37(3): 636-644.]
[26] 朱艳, 蔡焕杰, 宋利兵, 等. 加气灌溉下气候因子和土壤参数对土壤呼吸的影响[J]. 农业机械学报, 2016, 47(12): 223-232.
[26] [Zhu Yan, Cai Huanjie, Song Libin, et al. Effects of climate factors and soil parameters on soil respiration under oxygation conditions[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(12): 223-232.]
[27] 上官宇先, 师日鹏, 韩坤, 等. 垄沟覆膜栽培冬小麦田的土壤呼吸[J]. 生态学报, 2012, 32(18): 5729-5737.
[27] [Shangguan Yuxian, Shi Ripeng, Han Kun, et al. The dynamics of soil respiration in a winter wheat field with plastic mulchedridges and unmulched furrows[J]. Acta Ecologica Sinica, 2012, 32(18): 5729-5737.]
[28] 张前前, 王飞, 刘涛, 等. 微咸水滴灌对土壤酶活性、CO2通量及有机碳降解的影响[J]. 应用生态学报, 2015, 26(9): 2743-2750.
[28] [Zhang Qianqian, Wang Fei, Liu Tao, et al. Effects of brackish water irrigation on soil enzyme activity, soil CO2 flux and organic matter decomposition[J]. Chinese Journal of Applied Ecology, 2015, 26(9): 2743-2750.]
[29] 王顺科, 李艳红, 李发东, 等. 新疆典型淡水湖和咸水湖芦苇湿地土壤CO2、CH4和N2O排放研究[J]. 干旱区研究, 2020, 37(5): 1183-1193.
[29] [Wang Shunke, Li Yanhong, Li Fadong, et al. Emission of CO2, CH4 and N2O from reed wetland soil of typical freshwater lake and saltwater lake in Xinjiang[J]. Arid Zone Research, 2020, 37(5): 1183-1193.]
[30] 杨玉海, 朱成刚, 汪洋, 等. 塔里木河下游生态输水对胡杨林生态系统碳循环的影响[J]. 干旱区地理, 2021, 44(3): 637-642.
[30] [Yang Yuhai, Zhu Chenggang, Wang Yang, et al. Effects of ecological water transport on carbon cycle of Populus eukaryotica forest ecosystem in the lower reaches of Tarim River[J]. Arid Land Geography, 2021, 44(3): 637-642.]
[31] 吴瑞娟, 王迎春, 朱平, 等. 长期施肥对东北中部春玉米农田土壤呼吸的影响[J]. 植物营养与肥料学报, 2018, 24(1): 44-52.
[31] [Wu Ruijuan, Wang Yingchun, Zhu Ping, et al. Effects of long-term fertilization on soil respiration in spring maize field in the central part of Northeast China[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(1): 44-52.]
文章导航

/