水土资源

气候及土地利用变化对大通河源区水文要素空间分布的影响

  • 赵美亮 ,
  • 曹广超 ,
  • 赵青林 ,
  • 曹生奎
展开
  • 1.青海师范大学地理科学学院,青海省自然地理与环境过程重点实验室,青海 西宁 810008
    2.青海师范大学,青藏高原地表过程与生态保育教育部重点实验室,青海 西宁 810008
    3.青海省人民政府-北京师范大学高原科学与可持续发展研究院,青海 西宁 810008
赵美亮(1995-),男,博士研究生,研究方向为环境地表过程与生态响应. E-mail: zhaomeiliang2014@163.com

收稿日期: 2022-09-01

  修回日期: 2022-12-02

  网络出版日期: 2023-03-31

基金资助

青海省科技厅重大专项(2021-SF-A7-1);青海省创新平台建设专项青海省自然地理与环境过程重点实验室(2020-ZJ-Y06)

Effects of climate and land use change on the spatial distribution of hydrological factors in the source region of Datong River

  • Meiliang ZHAO ,
  • Guangchao CAO ,
  • Qinglin ZHAO ,
  • Shengkui CAO
Expand
  • 1. Qinghai Province Key Laboratory of Physical Geography and Environmental Process, College of Geographical Science, Qinghai Normal University, Xining 810008, Qinghai, China
    2. Key Laboratory of Tibetan Plateau Land Surface Processes and Ecological Conservation, Ministry of Education, Qinghai Normal University, Xining 810008, Qinghai, China
    3. Academy of Plateau Science and Sustainability People’s Government of Qinghai Province & Beijing Normals University, Xining 810008, Qinghai, China

Received date: 2022-09-01

  Revised date: 2022-12-02

  Online published: 2023-03-31

摘要

水资源短缺已成为人类社会主要的资源环境问题,气候和土地利用变化使得水文要素的演变呈现出复杂性与不确定性,探讨变化情景下水文要素空间分布特征对区域经济社会可持续发展具有重要的理论和现实意义。基于1960—2019年大通河源区气象水文数据,通过模型模拟及情景分割方法定量分析了气候和土地利用变化情景下水文要素空间分布特征。结果表明:(1) SWAT模型经过校准与验证后,模型决定系数、纳什系数和百分比偏差(PBIAS)均达到模型要求,其在率定期内分别为0.81%、0.79%和-0.8%,在验证期内分别为0.81%、0.75%和15.8%,表明模型在大通河源区具有较好的适用性。(2) 大通河源区各水文要素空间异质性明显,不能用单一的水文要素代表整体的空间分布情况;降水、潜在蒸散发与土壤含水量随海拔的升高而降低,地表径流与产水量随海拔的升高而增加。(3) 3种情景下各水文要素的空间分布大体一致,产水量的空间分布受土地利用变化情景的影响比较大。气候变化情景使得实际蒸散发和土壤含水量呈现下降趋势,地表径流和产水量呈现增加趋势,土地利用变化情景下各水文要素的变化与之相反。

本文引用格式

赵美亮 , 曹广超 , 赵青林 , 曹生奎 . 气候及土地利用变化对大通河源区水文要素空间分布的影响[J]. 干旱区研究, 2023 , 40(3) : 381 -391 . DOI: 10.13866/j.azr.2023.03.05

Abstract

Water shortage has become a major resource and environmental challenge worldwide. Climate and land use change have made the evolution of current hydrological factors complex and uncertain. Exploring the spatial distribution characteristics of hydrological factors under dynamic scenarios is of vital theoretical and practical significance for the sustainable development of regional economy and society. The meteorological and hydrological data of the Datong River source region from 1960 to 2019 were used in this study to quantitatively analyze the spatial distribution characteristics of hydrological elements under climate and land use change scenarios based on model simulation and scenario segmentation. The results showed that: (1) After calibration and verification of the SWAT model, the coefficient of determination, Nash coefficient, and percentage bias (PBIAS) all met the model requirements of 0.81%, 0.79%, and -0.8% in the rate period, and 0.81%, 0.75%, and 15.8% in the validation period, respectively, which indicated that the model had good applicability in the headwaters of the Chase River. (2) Obvious spatial heterogeneity of hydrological elements was detected in the headwater area of Datong River, and a single hydrological element could not represent the overall spatial distribution. Precipitation, potential evapotranspiration, and soil water content decreased with the increase in altitude, while surface runoff and water yield increased with the increase in altitude. (3) The spatial distribution of hydrological factors under the three scenarios were generally consistent, while the spatial distribution of water yield was greatly affected by the land use change. Under the climate change scenario, the actual evapotranspiration and soil water content showed a downward trend, while the surface runoff and water yield showed an upward trend. Under the land use change scenario, the changes of hydrological elements were contrary to these observations.

参考文献

[1] Siqueira P P, Oliveira P T S, Bressiani D, et al. Effects of climate and land cover changes on water availability in a Brazilian Cerrado basin[J]. Journal of Hydrology: Regional Studies, 2021, 37: 100931.
[2] 董晓光. 浅谈水资源利用与保护[J]. 水利科技与经济, 2011, 17(5): 35-36.
[2] [Dong Xiaoguang. On the utilization and protection of water resources[J]. Water Conservancy Science and Technology and Economy, 2011, 17(5): 35-36.]
[3] 张利平, 夏军, 胡志芳. 中国水资源状况与水资源安全问题分析[J]. 长江流域资源与环境, 2009, 18(2): 116-120.
[3] [Zhang Liping, Xia Jun, Hu Zhifang. Situation and problem analysis of water resources security in China[J]. Resources and Environment in the Yangtze Basin, 2009, 18(2): 116-120.]
[4] 胡宏韬, 林学钰, 蔡青勤. 中国的水环境状况及对策[J]. 干旱环境监测, 2001, 15(1): 41-44.
[4] [Hu Hongtao, Lin Xueyu, Cai Qingqin. State of water environment and countermeasure in China[J]. Arid Environmental Monitoring, 2001, 15(1): 41-44.]
[5] 王正, 黄粤, 刘铁, 等. 近60 a巴尔喀什湖水量平衡变化及其影响因素[J]. 干旱区研究, 2022, 39(2): 400-409.
[5] [Wang Zheng, Huang Yue, Liu Tie, et al. Analyzing the water balance of Lake Balkhash and its influencing factors[J]. Arid Zone Research, 2022, 39(2): 400-409.]
[6] 盖美, 翟羽茜. 中国水资源-能源-粮食-支撑系统安全测度及协调发展[J]. 生态学报, 2021, 41(12): 4746-4756.
[6] [Gai Mei, Zhai Yuqian. Measurement and coordinated development of water resources, energy, food and support security in China[J]. Acta Ecologica Sinica, 2021, 41(12): 4746-4756.]
[7] 李文娟, 覃志豪, 林绿. 农业旱灾对国家粮食安全影响程度的定量分析[J]. 自然灾害学报, 2010, 19(3): 111-118.
[7] [Li Wenjuan, Qin Zhihao, Lin Lv. Quantitative analysis of agro-drought impact on food security in China[J]. Journal of Natural Disasters, 2010, 19(3): 111-118.]
[8] Guo W, Hu J, Wang H. Analysis of runoff variation characteristics and influencing factors in the Wujiang River Basin in the past 30 Years[J]. Environmental Research and Public Health, 2022, 19(1): 19010372.
[9] Xue D X, Zhou J J, Zhao X, et al. Impacts of climate change and human activities on runoff change in a typical arid watershed, NW China[J]. Ecological Indicators, 2021, 121: 107013.
[10] IPCC. Climate Change 2013: The Physical Science Basis[M]. Cambridge: Cambridge University Press, 2013.
[11] 唐国利, 丁一汇, 王绍武, 等. 中国近百年温度曲线的对比分析[J]. 气候变化研究进展, 2009, 5(2): 71-78.
[11] [Tang Guoli, Ding Yihui, Wang Shaowu, et al. Comparative analysis of the time series of surface air temperature over China for the last 100 years[J]. Advances in Climate Change Research, 2009, 5(2): 71-78.]
[12] 张莉, 丁一汇, 吴统文, 等. CMIP5模式对21世纪全球和中国年平均地表气温变化和2 ℃升温阈值的预估[J]. 气象学报, 2013, 71(6): 1047-1060.
[12] [Zhang Li, Ding Yihui, Wu Tongwen, et al. The 21st century annual mean surface air temperature change and the 2 ℃ warming threshold over the globe and China as projected by the CMIP5 models[J]. Acta Meteorologica Sinica, 2013, 71(6): 1047-1060.]
[13] Immerzeel W W, van Beek L P, Bierkens M F. Climate change will affect the Asian water towers[J]. Science, 2010, 328(5984): 1382-1385.
[14] Wu J K, Li H Y, Zhou J X, et al. Variation of runoff and runoff components of the upper Shule River in the northeastern Qinghai-Tibet Plateau under Climate Change[J]. Water 2021, 13(23): 3357.
[15] Wu Y Y, Fang H W, Huang L, et al. Changing runoff due to temperature and precipitation variations in the dammed Jinsha River[J]. Journal of Hydrology, 2019, 582: 124500.
[16] 田晶, 郭生练, 刘德地, 等. 气候与土地利用变化对汉江流域径流的影响[J]. 地理学报, 2020, 75(11): 2307-2318.
[16] [Tian Jing, Guo Shenglian, Liu Dedi, et al. Impacts of climate and land use/cover changes on runoff in the Hanjiang River basin[J]. Acta Geographica Sinica, 2020, 75(11): 2307-2318.]
[17] 任才, 龙爱华, 於嘉闻, 等. 气候与下垫面变化对叶尔羌河源流径流的影响[J]. 干旱区地理, 2021, 44(5): 1373-1383.
[17] [Ren Cai, Long Aihua, Yu Jiawen, et al. Effects of climate and underlying surface changes on runoff of Yarkant River Source[J]. Arid Land Geography, 2021, 44(5): 1373-1383.]
[18] 霍军军, 伊明启, 王静, 等. 拉萨河流域径流对土地利用和气候变化的响应分析[J]. 长江科学院院报, 2021, 38(10): 33-39.
[18] [Huo Junjun, Yi Mingqi, Wang Jing, et al. Response of runoff in Lhasa River Basin to land use and climate change[J]. Journal of Yangtze River Scientific Research Institute, 2021, 38(10): 33-39.]
[19] 黄维东, 牛最荣, 刘彦娥, 等. 梯级水电开发对大通河流域洪水过程的影响分析[J]. 水文, 2016, 36(4): 58-65.
[19] [Huang Weidong, Niu Zuirong, Liu Yan’e, et al. Effect of cascade hydroelectric development on flood process in Datonghe River basin[J]. Journal of China Hydrology, 2016, 36(4): 58-65.]
[20] 董军, 胡进宝, 魏国孝. 大通河流域径流变化及特征分析[J]. 水资源与水工程学报, 2018, 29(6): 75-80, 87.
[20] [Dong Jun, Hu Jinbao, Wei Guoxiao. Analysis of runoff variation and characteristics in Datong River basin[J]. Journal of Water Resources and Water Engineering, 2018, 29(6): 75-80, 87.]
[21] 王大超, 杜丽芳, 路贺, 等. 大通河流域近60年径流变化特征和趋势分析[J]. 水利水电快报, 2019, 40(4): 17-21.
[21] [Wang Dachao, Du Lifang, Lu He, et al. Variation characteristics and trend analysis of runoff in Datong River basin in recent 60 years[J]. Express Water Resources & Hydropower Information, 2019, 40(4): 17-21.]
[22] 刘赛艳, 黄强, 解阳阳, 等. 大通河流域上游径流变化特征与突变分析[J]. 西北农林科技大学学报(自然科学版), 2016, 44(3): 219-226.
[22] [Liu Saiyan, Huang Qiang, Xie Yangyang, et al. Abrupt change and variation characteristics of runoff in the upper reaches of Datong River basin[J]. Journal of Northwest A & F University (Natural Science Edition), 2016, 44(3): 219-226.]
[23] Wu Jun, Deng Guoning, Zhou Dongmei, et al. Effects of climate change and land-use changes on spatiotemporal distributions of blue water and green water in Ningxia, Northwest China[J]. Journal of Arid Land, 2021, 13(7): 674-687.
[24] 窦小东, 黄玮, 易琦, 等. LUCC及气候变化对澜沧江流域径流的影响[J]. 生态学报, 2019, 39(13): 4687-4696.
[24] [Dou Xiaodong, Huang Wei, Yi Qi, et al. Impacts of LUCC and climate change on runoff in Lancang River Basin[J]. Acta Ecologica Sinica, 2019, 39(13): 4687-4696.]
[25] Arnold J G, Srinivasan R, Muttiah R S, et al. Large area hydrologic modeling and assessment(Part 1): Model development[J]. Journal of American Water Resource Association, 1998, 34(1): 73-89.
[26] 宋玉鑫, 左其亭, 马军霞. 基于SWAT模型的开都河流域水文干旱变化特征及驱动因子分析[J]. 干旱区研究, 2021, 38(3): 610-617.
[26] [Song Yuxin, Zuo Qiting, Ma Junxia. Variation and dynamic drivers of drought in Kaidu River Basin based on the SWAT model[J]. Arid Zone Research, 2021, 38(3): 610-617.]
[27] 郭伟, 陈兴伟, 林炳青. SWAT模型参数对土地利用变化的响应及其对不同时间尺度径流模拟的影响[J]. 生态学报, 2021, 41(16): 6373-6383.
[27] [Guo Wei, Chen Xingwei, Lin Bingqing. Response of SWAT model parameters to land use change and its effects on the simulation of runoff with different time scales[J]. Acta Ecologica Sinica, 2021, 41(16): 6373-6383.]
[28] Wang Z Y, Cao J S. Spatial-temporal pattern study on water conservation function using the SWAT model[J]. Water Supply, 2021, 21(7): 3629-3642.
[29] 祖拜代·木依布拉, 师庆东, 普拉提·莫合塔尔, 等. 基于SWAT模型的乌鲁木齐河上游土地利用和气候变化对径流的影响[J]. 生态学报, 2018, 38(14): 5149-5157.
[29] [Zubaidai Muyibul, Shi Qingdong, Pulati Muhtar, et al. Land use and climate change effects on runoff in the upper Urumqi River watershed: A SWAT model based analysis[J]. Acta Ecologica Sinica, 2018, 38(14): 5149-5157.]
[30] 王钰双, 陈芸芝, 卢文芳, 等. 闽江流域不同土地利用情景下的径流响应研究[J]. 水土保持学报, 2020, 34(6): 30-36.
[30] [Wang Yushuang, Chen Yunzhi, Lu Wenfang, et al. The hydrological response to different land use scenarios in the Minjiang River basin[J]. Journal of Soil and Water Conservation, 2020, 34(6): 30-36.]
[31] 邹凯波, 张玉虎, 刘晓伟, 等. 气候变化下乌伦古河流域农业面源污染负荷响应[J]. 干旱区研究, 2022, 39(2): 625-637.
[31] [Zou Kaibo, Zhang Yuhu, Liu Xiaowei, et al. Response of agricultural nonpoint source pollution load in the Ulungur River basin under climate change[J]. Arid Zone Research, 2022, 39(2): 625-637.]
[32] 田义超, 王世杰, 白晓永. 桐梓河流域径流对气候和人类活动的响应[J]. 水土保持研究, 2020, 27(3): 76-82.
[32] [Tian Yichao, Wang Shijie, Bai Xiaoyong. Response of runoff to climate and human activities in Tongzi Tiver Basin[J]. Research of Soil and Water Conservation, 2020, 27(3): 76-82.]
[33] Yang L S, Feng Q, Yin Z L, et al. Identifying separate impacts of climate and land use/cover change on hydrological processes in upper stream of Heihe River, Northwest China[J]. Hydrological Process, 2017, 31(5): 1100-1112.
文章导航

/