不同河渠水位条件下壤砂土上升毛管水运动特性——以叶尔羌河灌区为例
收稿日期: 2022-07-12
修回日期: 2022-09-14
网络出版日期: 2023-03-31
基金资助
中南冶金地质研究所创新基金(2021002);国家重点研发计划(2021YFD1900801);新疆水利科技专项资金项目(XSKJ-2021-05)
Capillary water movement characteristics in loamy sand under different water levels: A case study in the Yarkant River Irrigation Area of Xinjiang Province, China
Received date: 2022-07-12
Revised date: 2022-09-14
Online published: 2023-03-31
以叶尔羌河灌区为研究区域,采用垂直土柱试验模拟的方法,研究不同河渠水位条件下壤砂土上升毛管水的运动特性。结果表明:毛管水补给速率随时间推移呈降低趋势,明显分为快速下降、线性递减和稳定补给3个阶段;毛管水上升高度及上升速率均与时间之间呈幂函数关系;不同河渠水位条件下壤砂土毛管水补给量与毛管水上升高度呈正比关系,其斜率在数值上等于湿润区土壤平均含水率与初始含水率之差,改进Green Ampt模型可描述毛管水补给量与毛管水上升高度之间的线性关系;毛管水补给速率与毛管水上升高度的倒数呈线性关系。研究成果可为干旱区河渠两岸生态保护植物的恢复和重建及土壤盐渍化的防治提供理论依据。
陈永宝 , 胡顺军 , 张书杰 , 裴明松 , 张巧丽 . 不同河渠水位条件下壤砂土上升毛管水运动特性——以叶尔羌河灌区为例[J]. 干旱区研究, 2023 , 40(3) : 373 -380 . DOI: 10.13866/j.azr.2023.03.04
River canal leakage is the main mode of surface water replenishment to soil water for desert riverbank ecological protection, plant water absorption, and utilization. It is also an important cause of soil salinization during increased groundwater level periods. Therefore, studying the movement of groundwater and soil moisture under the condition of canal leakage recharge in arid areas can be crucial not only for constructing a benign ecological circulation system dominated by water environment, but also for preventing soil salinization. This study used laboratory simulation experiment to analyze the capillary water movement characteristics in loamy sand under different water levels in Yarkant River irrigation area. Results showed a decreasing trend in the capillary water supply rate, which could be subdivided into three stages, including rapid decrease, linear decrease, and stable-state, while the average stable recharge rate 0.02 mm·min-1 was detected. The rising height of capillary water and rising rate both had parabola relationships with the recharge time. Validation of the linear relationship between capillary water recharge and rising height of capillary water under different canal water levels revealed that the slope (B) was equal to the difference between the mean soil water content (θmean) and initial water content (θi), while B values under different canal water levels ranged from 0.3155 to 0.4046 cm3·cm-3, with a mean value of 0.3695 cm3·cm-3. A linear correlation was detected between capillary water supply rate and the reciprocal value of rising height of capillary water. The improved Green-Ampt model could successfully be used to simulate capillary water rise process in a homogeneous loamy sand. Overall, these results could potentially provide clues for studying the restoration and reconstruction of ecologically protected plants in canals, and for the prevention of soil salinization in arid areas.
[1] | 吉文平. 河渠渗漏补给规律和计算方法的探讨[J]. 地下水, 2009, 29(5): 131-137. |
[1] | [Ji Wenping. Discussion on the replenishment laws and calculation methods of quantifying seepage from rivers and canals[J]. Groundwater, 2009, 29(5): 131-137.] |
[2] | 张蔚榛. 地下水与土壤水动力学[M]. 北京: 水利电力出版社, 1996: 34-71. |
[2] | [Zhang Weizhen. Groundwater and Soil Hydrodynamics[M]. Beijing: China Water Power Press, 1996: 34-71.] |
[3] | 罗玉峰, 崔远来, 郑祖金. 河渠渗漏量计算方法研究进展[J], 水科学进展, 2006, 16(5): 444-449. |
[3] | [Luo Yufeng, Cui Yuanlai, Zheng Zujin. Research progress on methods of quantifying seepage from rivers and canals[J]. Advances in Water Science, 2006, 16(5): 444-449.] |
[4] | 陶月赞, 曹彭强, 席道瑛. 垂向入渗与河渠边界影响下潜水非稳定流参数的求解[J]. 水利学报, 2006, 37(8): 913-917. |
[4] | [Tao Yuezan, Cao Pengqiang, Xi Daoying. Parameter estimation for semi-infinite phreatic aquifer subjected to vertical seepage and bounded by channel[J]. Journal of Hydraulic Engineering, 2006, 37(8): 913-917.] |
[5] | 熊宇斐, 张广朋, 徐海量, 等. 塔里木河河床渗透系数及其渗漏水量分析[J]. 干旱区研究, 2017, 34(2): 266-273. |
[5] | [Xiong Yupei, Zhang Guangpeng, Xu Hailiang, et al. Hydraulic conductivities of riverbed sediment and leakage water volume of the Tarim river[J]. Arid Zone Research, 2017, 34(2): 266-273.] |
[6] | 陈新均, 王学全, 卢琦, 等. 季节性河道土壤水分及其渗漏特征初探[J]. 干旱区研究, 2020, 37(1): 97-104. |
[6] | [Chen Xinjun, Wang Xuequan, Lu Qi, et al. Soil moisture content and soil water infiltration in seasonal water course in arid area[J]. Arid Zone Research, 2020, 37(1): 97-104.] |
[7] | 陶月赞, 席道瑛. 垂直与水平渗透作用下潜水非稳定渗流运动规律[J]. 应用数学和力学, 2006, 27(1): 53-59. |
[7] | [Tao Yuezan, Xi Daoying. Rule of transient phreatic flow subjected to vertical and horizontal seepage[J]. Applied Mathematics and Mechanics, 2006, 27(1): 53-59.] |
[8] | 陶建华, 陶月赞, 刘佩贵. 沙颍河干流与地下水水量交换研究[J]. 水资源保护, 2012, 28(6): 37-40, 45. |
[8] | [Tao Jianhua, Tao Yuezan, Liu Peigui. Water exchange between groundwater and main stream of Shaying River[J]. Water Resources Protection, 2012, 28(6): 37-40, 45.] |
[9] | 杨鹏年, 张胜江, 董新光. 塔里木河干流下游生态输水后水量转化特征[J]. 干旱区研究, 2007, 24(2): 174-178. |
[9] | [Yang Pengnian, Zhang Shengjiang, Dong Xinguang. Study on the characteristics of water conversion after conveying stream water to the lower reaches of the Tarim River for regenerating the ecology[J]. Arid Zone Research, 2007, 24(2): 174-178.] |
[10] | Li Wen Hsiung. Differential Equations of Hydraulic Transient, Dispersion, and Groundwater Flow[M]. Englrwood Cliffs: Prentice-Hall, 1972. |
[11] | 许秀元. 河渠影响下土壤水-地下潜水联合运动的模拟研究[J]. 水利学报, 1997, 42(12): 21-29. |
[11] | [Xu Xiuyuan. Simulation research on the conjioned movements of soil water-subsurface unconfined water under influences of river or channel[J]. Journal of Hydraulic Engineering, 1997, 42(12): 21-29.] |
[12] | 张健, 魏占民, 张金丁, 等. 渠道土壤含水率的时空变化及渗漏模拟研究[J]. 灌溉排水学报, 2020, 39(6): 86-92. |
[12] | [Zhang Jian, Wei Zhanmin, Zhang Jinding, et al. Numerical simulation of spatiotemporal variation in exfiltration and moisture content in the proximal soil of channel[J]. Journal of Irrigation and Drainage, 2020, 39(6): 86-92.] |
[13] | 邵明安, 王全九, 黄明斌. 土壤物理学[M]. 北京: 高等教育出版社, 2010. |
[13] | [Shao Ming’an, Wang Quanjiu, Huang Mingbin. Soil Physics[M]. Beijing: Higher Education Press, 2010.] |
[14] | 董斌, 张喜发, 李欣, 等. 毛细水上升高度综合试验研究[J]. 岩土工程学报, 2008, 30(10): 1569-1574. |
[14] | [Dong Bin, Zhang Xifa, Li Xin, et al. Comperhensive tests on rising height of capillary water[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(10): 1569-1574.] |
[15] | 刘伟佳, 吴军虎, 裴青宝, 等. 不同地下水埋深条件下均质土壤毛管上升水运动特性试验研究[J]. 水资源与水工程学报, 2010, 21(1): 67-70. |
[15] | [Liu Weijia, Wu Junhu, Pei Qingbao, et al. Experimental research on capillary water upward movement in homogeneous soil under different ground water tables[J]. Journal of Water Resources & Water Engineering, 2010, 21(1): 67-70.] |
[16] | 张平, 吴昊, 殷洪建, 等. 颗粒级配对毛细水上升影响的研究[J]. 节水灌溉, 2010, 35(7): 24-26. |
[16] | [Zhang Ping, Wu Hao, Yin Hongjian, et al. Effect of particle size distribution on capillary water upward movement[J]. Water Saving Irrigation, 2010, 35(7): 24-26.] |
[17] | 陈琳, 费良军, 傅渝亮, 等. 不同土壤温度和容重下微咸水上升毛管水运动特性HYDRUS模拟及验证[J]. 水土保持学报, 2018, 32(6): 87-96, 185. |
[17] | [Chen Lin, Fei Liangjun, Fu Yuliang, et al. Simulation and verification of movement characteristics of upward capillary water flow of saline water in soils with different soil temperatures and bulk densities using HRDRUS[J]. Journal of Soil and Water Conservation, 2018, 32(6): 87-96, 185.] |
[18] | 钟韵, 费良军, 傅渝亮, 等. 多因素影响下土壤上升毛管水运动特性HYDRUS 模拟及验证[J]. 农业工程学报, 2018, 34(5): 83-89. |
[18] | [Zhong Yun, Fei Liangjun, Fu Yuliang, et al. HYDRUS simulation and verification of movement characteristics of upward capillary water flow in soil as affected by multifactor[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(5): 83-89.] |
[19] | 何克瑾, 费良军, 尹娟, 等. 均质土壤上升毛管水运动特性试验[J]. 沈阳农业大学学报, 2007, 38(4): 581-585. |
[19] | [He Kejin, Fei Liangjun, Yin Juan, et al. Rising capillary water transport characteristics of homogeneous soil[J]. Journal of Shenyang Agricultural University, 2007, 38(4): 581-585.] |
[20] | 董荣泽. 水质对沙土毛管上升特性及滴灌土壤水盐运移的影响[D]. 太原: 太原理工大学, 2018. |
[20] | [Dong Rongze. An Investigation on Capillary Water Upward Movement in Sand Soil and the Salt-water Transport in Drip Irrigation under the Influence of Water Quality[D]. Taiyuan: Taiyuan University of Technology, 2018.] |
[21] | 阿里木·土尔逊, 周志芳, 木塔力甫·依明尼亚孜. 河渠附近潜水非稳定运动的一种通解[J]. 河海大学学报(自然科学版), 2003, 31(6): 649-651. |
[21] | [Alim Tursun, Zhou Zhifang, Mutalip Iminniyaz. A universal solution to unstable groundwater movement in vicinity of canals[J]. Journal of Hehai University(Natural Sciences Edition), 2003, 31(6) : 649-651.] |
[22] | 杨红坡, 谢新宇, 张继发, 等. 潜水一维非稳态运动的解析理论及应用[J]. 水科学进展, 2004, 24(1): 82-86. |
[22] | [Yang Hongpo, Xie Xinyu, Zhang Jifa, et al. Analytical solution of one-dimensional transient phreatic flow and its application[J]. Advances in Water Science, 2004, 24(1): 82-86.] |
[23] | 杨金忠. 地下水运动数学模型[M]. 北京: 科学出版社, 2009: 32-34. |
[23] | [Yang Jinzhong. Groundwater Flow Models[M]. Beijing: Science Press, 2009: 32-34.] |
[24] | 张蔚榛. 地下水非稳定流计算和地下水资源评价[M]. 北京: 科学出版社, 1983: 214-231, 379-384. |
[24] | [Zhang Weizhen. Transient Groundwater Hydraulics and the Evaluation of Groundwater Resources[M]. Beijing: Science Press, 1983: 214-231, 379-384.] |
[25] | 郭梦, 吴克宁, 杜凯闯. 新疆地区盐土在中国土壤系统分类中的归属[J]. 土壤, 2020, 51(2): 253-262. |
[25] | [Guo Meng, Wu Kening, Du Kaichuang. Attribution of saline soils in Xinjiang based on Chinese soil taxonomy[J]. Chinese Journal of Soil Science, 2020, 51(2): 253-262.] |
[26] | 陈永宝, 胡顺军, 罗毅, 等. 新疆喀什地下水浅埋区弃荒地表层土壤积盐与地下水的关系[J]. 土壤学报, 2014, 51(1): 75-81. |
[26] | [Chen Yongbao, Hu Shunjun, Luo Yi, et al. Relationship between salt accumulation in topsoil of deserted land and groundwater in areas with shallow groundwater table in Kashi, Xinjiang[J]. Acta Pedologica Sinica, 2014, 51(1): 75-81.] |
[27] | 陈永宝, 胡顺军, 罗毅, 等. 不同入渗水头条件下壤砂土的一维垂直入渗特性[J]. 干旱区地理, 2014, 37(4): 713-719. |
[27] | [Chen Yongbao, Hu Shunjun, Luo Yi, et al. One-dimensional vertical infiltration characteristics of loamy sand under different infiltration heads[J]. Arid Land Geography, 2014, 37(4): 713-719.] |
[28] | 董荣泽, 于明英, 邱照宁, 等. 沙土上升毛管水运动特性研究[J], 节水灌溉, 2018, 43(4): 19-25. |
[28] | [Dong Rongze, Yu Mingying, Qiu Zhaoning, et al. A study on capillary water movement characteristics in sandy soil[J]. Water Saving Irrigation, 2018, 43(4): 19-25.] |
[29] | 王全九, 来剑斌. Philip模型与Greem-Ampt模型互对比分析[J]. 农业工程学报, 2002, 12(2): 13-16. |
[29] | [Wang Quanjiu, Lai Jianbin. Comparison of Greem-Ampt model with Philip infiltration model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2002, 12(2): 13-16.] |
/
〈 | 〉 |