天气与气候

树轮记录的吕梁山北段1923年以来3—4月平均最高气温变化

  • 王嘉川 ,
  • 李书恒 ,
  • 郭伊利 ,
  • 韩宜洁 ,
  • 毛忠雷
展开
  • 1.西北大学城市与环境学院, 陕西 西安 710127
    2.陕西省地表系统与环境承载力重点实验室, 陕西 西安 710127
王嘉川(1996-),男,硕士研究生,主要从事树木年轮气候学研究. E-mail: jiachuanwang2020@163.com

收稿日期: 2022-06-27

  修回日期: 2022-11-25

  网络出版日期: 2023-03-31

基金资助

黄土与第四纪地质国家重点实验室开放基金项目(SKLLQG1611);陕西省自然科学基金项目(2014JQ5172)

Variation of mean maximum temperature from March to April since 1923 in the northern section of Lvliang Mountain recorded by tree rings

  • Jiachuan WANG ,
  • Shuheng LI ,
  • Yili GUO ,
  • Yijie HAN ,
  • Zhonglei MAO
Expand
  • 1. College of Urban and Environmental Sciences, Northwest University, Xi’an 710127, Shaanxi, China
    2. Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, Xi’an 710127, Shaanxi, China

Received date: 2022-06-27

  Revised date: 2022-11-25

  Online published: 2023-03-31

摘要

基于吕梁山北段管涔山地区华北落叶松(Larix principis-rupprechtii)样芯资料,建立树轮宽度标准年表(STD),利用Pearson相关分析方法得出3—4月平均最高气温是研究区树木径向生长的主控气候因子(R=0.509,P<0.05)。借助一阶线性回归方程模拟构建近百年来管涔山地区3—4月平均最高气温的变化过程,同时应用逐一剔除法对重建方程进行交叉检验,验证回归方程的稳定性和可靠性。对重建气温序列温度变化分析可知,管涔山地区过去近百年有两个暖期和三个冷期分布,暖期为1932—1945年和1957—1970年;冷期为1946—1956年,1971—1983年和1993—2010年。基于Morlet小波分析对重建气温序列周期分析可知,存在3~5 a、10~13 a、22~33 a、40~45 a的周期分布特征,厄尔尼诺-南方涛动(El Niño-Southern Oscillation,ENSO)现象和太阳黑子活动是其周期变化驱动因子。大尺度空间相关分析可知,重建气温序列对俄罗斯中东部、日本北部、中国中东部等大范围地区的温度变化具有很好的空间代表性。研究结果进一步补充和丰富管涔山地区气候资料,同时对森林管理及农牧业发展具有重要的参考意义。

本文引用格式

王嘉川 , 李书恒 , 郭伊利 , 韩宜洁 , 毛忠雷 . 树轮记录的吕梁山北段1923年以来3—4月平均最高气温变化[J]. 干旱区研究, 2023 , 40(3) : 337 -348 . DOI: 10.13866/j.azr.2023.03.01

Abstract

With the established standard chronology of the tree-ring width of Larix principis-rupprechtii in the Guancen Mountain in the northern section of Lvliang Mountain as basis, Pearson correlation analysis concluded that the average maximum temperature from March to April was the main controlling climate factor for the radial growth of trees in the study area (R = 0.509, P < 0.05). First-order linear regression equation was used to simulate and construct the change process of the average maximum temperature in the Guancen Mountains from March to April in the past nearly a century. The reconstructed equation was then cross-checked by the elimination method of leave-one-out test to verify its stability and reliability. Analysis of the temperature changes of the reconstructed temperature series showed that two warm periods and three cold periods in the past nearly a century in the Guancen Mountain area; the warm periods were 1932-1945 and 1957-1970, and the cold periods were 1946-1956, 1971-1983, and 1993-2010. Periodic analysis of the reconstructed temperature series based on Morlet wavelet analysis revealed periodic distribution characteristics of 3~5 a, 10~13 a, 22~33 a, and 40~45 a. El Niño-Southern Oscillation and sunspot activity were the drivers of this periodic variation. Large-scale spatial correlation analysis indicated that the reconstructed temperature series had a good spatial representation of temperature changes in large-scale regions such as central and eastern Russia, northern Japan, and central and eastern China. These results have important reference value for forest management and agriculture and animal husbandry development in Guancen Mountain area.

参考文献

[1] Visser P M, Verspagen J, Sandrini G, et al. How rising CO2 and global warming may stimulate harmful cyanobacterial blooms[J]. Harmful Algae, 2016, 54: 145-159.
[2] Piao S, He Y, Wang X, et al. Estimation of China’s terrestrial ecosystem carbon sink: Methods, progress and prospects[J]. Science China Earth Sciences, 2022, 65(4): 641-651.
[3] Seager R, Cane M, Henderson N, et al. Strengthening tropical Pacific zonal sea surface temperature gradient consistent with rising greenhouse gases[J]. Nature Climate Change, 2019, 9: 517-522.
[4] Chen F H, Ding L, Piao S L, et al. The Tibetan Plateau as the engine for Asian environmental change: the Tibetan Plateau Earth system research into a new era[J]. Science Bulletin, 2021, 66: 1263-1266.
[5] Morice C P, Kennedy J J, Rayner N A, et al. An updated assessment of near-surface temperature change from 1850: The HadCRUT5 data set[J]. Journal of Geophysical Research: Atmospheres, 2021, 126: e2019JD032361.
[6] Yang Y T, Mcvicar T R, Yang D W, et al. Low and contrasting impacts of vegetation CO2 fertilization on global terrestrial runoff over 1982-2010: Accounting for aboveground and belowground vegetation CO2 effects[J]. Hydrology and Earth System Sciences, 2021, 25: 3411-3427.
[7] 李江风, 袁玉江, 周文盛. 新疆年轮气候年轮水文研究[M]. 北京: 气象出版社, 1989.
[7] [Li Jiangfeng, Yuan Yujiang, Zhou Wensheng. A Study on the Climate and Annual Ring Hydrology of Xinjiang[M]. Beijing: Weather Press, 1989.]
[8] 吴祥定. 树木年轮与气候变化[M]. 北京: 气象出版社, 1990.
[8] [Wu Xiangding. Tree Rings and Climate Change[M]. Beijing: Weather Press, 1990.]
[9] Dinella A, Glammarchi F, Prendin A L, et al. Xylem traits of peatland Scots pines reveal a complex climatic signal: A study in the Eastern Italian Alps[J]. Dendrochronologia, 2021, 67, 125824.
[10] Gaire N P, Fan Z X, Shah S K, et al. Tree-ring record of winter temperature from Humla, Karnali, in central Himalaya: A 229 years long perspective for recent warming trend[J]. Geografiska Annaler: Series A, Physical Geography, 2020.
[11] Esper J, Hartl C, Tejedor E, et al. High-resolution temperature variability reconstructed from Black Pine Tree Ring densities in Southern Spain[J]. Atmosphere, 2020, 11(7): 11070748.
[12] Harley G L, Heeter K J, Maxwell J T, et al. Towards broad-scale temperature reconstructions for Eastern North America using blue light intensity from tree rings[J]. International Journal of Climatology, 2021, 41: 3142-3159.
[13] Opala-owczarek M, Galstyan H, Owczarek P, et al. Dendrochronological potential of drought-Sensitive tree stands in Armenia for the hydroclimate reconstruction of the Lesser Caucasus[J]. Atmosphere, 2021, 12(2): 12020153.
[14] 焦亮, 马罗, 张同文, 等. 基于树轮记录的阿尔泰山中段 1798 年以来6—7月平均最低气温变化研究[J]. 生态学报, 2021, 41(5): 1944-1958.
[14] [Jiao Liang, Ma Luo, Zhang Tongwen, et al. Changes of mean minimum temperature in June-July since 1798 in central Altay Mountain recorded by tree rings[J]. Acta Ecologica Sinica, 2021, 41(5): 1944-1958.]
[15] 秦进, 白红英, 刘荣娟, 等. 近 144 年来秦岭太白山林线区3—6月平均气温的重建[J]. 生态学报, 2017, 37(22): 7585-7594.
[15] [Qin Jin, Bai Hongying, Liu Rongjuan, et al. Reconstruction of March-June mean air temperature along the timberline of Mount Taibai, Qinling Mountains, Northwest China, over the last 144 years[J]. Acta Ecologica Sinica, 2017, 37(22): 7585-7594.]
[16] 张瑞波, 袁玉江, 喻树龙, 等. 树轮记录的青海过去300年5—6月平均最高气温时空变化[J]. 生态学报, 2016, 36(23): 7603-7613.
[16] [Zhang Ruibo, Yuan Yujiang, Yu Shulong, et al. The spatiotemporal variability of May-June maximum temperature in past 300 years on the Qinghai Plateau, according to tree ring records[J]. Acta Ecologica Sinica, 2016, 36(23): 7603-7613.]
[17] 蔡秋芳, 刘禹. 过去百年河南桐柏山气温变化历史及其与海气相互作用的联系[J]. 第四纪研究, 2021, 41(2): 346-355.
[17] [Cai Qiufang, Liu Yu. Temperature variation of the past century in the Tongbai Mountain, Henan Province and its relationship with air-sea interaction[J]. Quaternary Sciences, 2021, 41(2): 346-355.]
[18] 蔡秋芳, 刘禹. 湖北麻城马尾松树轮宽度对气候的响应及1879年以来6—9月平均最高气温重建[J]. 科学通报, 2013, 58(增刊Ⅰ): 169-177.
[18] [Cai Qiufang, Liu Yu. The June-September maximum mean temperature reconstruction from Masson pine (Pinus massoniana Lamb. ) tree rings in Macheng, southeast China since 1879 AD[J]. Chinese Science Bulletin, 2013, 58(Suppl. I): 169-177.]
[19] 谢成晟, 李景吉, 高苑苑, 等. 基于树轮宽度重建川西南137年秋冬季平均气温变化[J]. 第四纪研究, 2020, 40(1): 252-263.
[19] [Xie Chengsheng, Li Jingji, Gao Yuanyuan, et al. Tree-ring width based autumn and winter mean temperature reconstruction and its variation over the past 137 years in Southwestern Sichuan Province[J]. Quaternary Sciences, 2020, 40(1): 252-263.]
[20] 蔡秋芳, 刘禹, 包光, 等. 树轮记录的吕梁山地区公元1836年以来5—7月平均气温变化[J]. 科学通报, 2010, 55(20): 2033-2039.
[20] [Cai Qiufang, Liu Yu, Bao Guang, et al. Tree-ring-based May-July mean temperature history for Lüliang Mountains, China, since 1836[J]. Chinese Science Bulletin, 2010, 55(20): 2033-2039.]
[21] 王振威, 李强, 刘禹, 等. 树轮记录的吕梁山北部过去175年来帕尔默干旱指数变化[J]. 地球环境学报, 2020, 11(1): 72-80.
[21] [Wang Zhenwei, Li Qiang, Liu Yu, et al. PDSI variations recorded by tree rings in the northern Lüliang Mountains during the past 175 years[J]. Journal of Earth Environment, 2020, 11(1): 72-80.]
[22] 李强, 刘禹, 蔡秋芳, 等. 山西宁武地区1686年以来年降水重建[J]. 第四纪研究, 2006, 26(6): 999-1006.
[22] [Li Qiang, Liu Yu, Cai Qiufang, et al. Reconstruction of annual precipitation since 1686 A. D. from Ningwu region, Shanxi Province[J]. Quaternary Sciences, 2006, 26(6): 999-1006.]
[23] 马丽. 管涔山生物多样性特征研究[J]. 山西林业科技, 2014, 43(3): 19-21.
[23] [Ma Li. Study on biodiversity characteristic in Guancen Mountain[J]. Shanxi Forestry Science and Technology, 2014, 43(3): 19-21.]
[24] 郝晓鹏, 上官铁梁, 邱文. 汾河源头管涔山森林群落植物物种多样性研究[J]. 安徽农业科学, 2009, 37(13): 6232-6235.
[24] [Hao Xiaopeng, Shangguan Tieliang, Qiu Wen. Plant species diversity of the forestry community in Guancen Mountain at the source of Fen River of Shanxi[J]. Journal of Anhui Agriculture Science, 2009, 37(13): 6232-6235.]
[25] 王嘉川, 李书恒, 郭伊利, 等. 管涔山华北落叶松径向生长对温度变化的动态响应[J/OL]. 生态学杂志, 2022: 1-13. [2022-10-06]. https://kns.cnki.net/kcms/detail/21.1148.Q.20220930.1612.012.html.
[25] [Wang Jiachuan, Li Shuheng, Guo Yili, et al. Dynamic response to climate change in the radial growth of Larix principis-rupprechtii on Guancen Mountain[J/OL]. Chinese Journal of Ecology, 2022: 1-13. [2022-10-06]. https://kns.cnki.net/kcms/detail/21.1148.Q.20220930.1612.012.html.]
[26] Stokes M A, Smiley T L. An Introduction to Tree-ring Dating[M]. Chicago: University of Chicago Press, 1968.
[27] Holmes R L. Computer-assisted quality control in tree-ring dating and measurement[J]. Tree-ring Bulletin, 1983, 43: 69-75.
[28] Holmes R L, Adams R K, Fritts H C, et al. Tree-ring Chronologies of Western North America: California, Eastern Oregon and Northern Great Basin. Chronology Series VI[M]. Laboratory of Tree-ring Research, University of Arizona, 1986: 50-60.
[29] Shekhar M, Pal A K, Bhattacharyya A, et al. Tree-ring based reconstruction of winter drought since 1767 CE from Uttarkashi, Western Himalaya[J]. Quaternary International, 2017, 479: 58-69.
[30] 崔宇, 胡列群, 袁玉江, 等. 树轮记录的过去359 a阿勒泰地区初夏气温变化[J]. 沙漠与绿洲气象, 2015, 9(5): 22-28.
[30] [Cui Yu, Hu Liequn, Yuan Yujiang, et al. Early summer temperature change in Altay over the past 359 years recorded by tree rings[J]. Desert and Oasis Meteorology, 2015, 9(5): 22-28.]
[31] Wigley T M L, Briffa K R, Jones P D. On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology[J]. Journal of Climate and Applied Meteorology, 1984, 23(2): 201-213.
[32] 林振山, 邓自旺. 子波气候诊断技术的研究[M]. 北京: 气象出版社, 1999: 1-174.
[32] [Lin Zhenshan, Deng Ziwang. Research on Wavelet Climate Diagnosis Technology[M]. Beijing: Weather Press, 1999: 1-174.]
[33] 周子建, 江源, 董满宇, 等. 长白山北坡不同海拔红松径向生长-气候因子关系对气温突变的响应[J]. 生态学报, 2018, 38(13): 4668-4676.
[33] [Zhou Zijian, Jiang Yuan, Dong Manyu, et al. Response of the relationship between radial growth and climatic factors to abrupt change of temperature along an altitudinal gradient on the northern slope of Changbai Mountain, Northeast China[J]. Acta Ecologica Sinica, 2018, 38(13): 4668-4676.]
[34] 白天军, 邓文平, 旷远文, 等. 庐山不同海拔日本柳杉年轮宽度对气候因子的响应[J]. 生态学杂志, 2020, 39(1): 57-66.
[34] [Bai Tianjun, Deng Wenping, Kuang Yuanwen, et al. Response of tree ring width in Cryptomeria japonica to climatic factors at different elevations in Lushan Mountain[J]. Chinese Journal of Ecology, 2020, 39(1): 57-66.]
[35] 郭伊利, 李书恒, 王嘉川, 等. 芦芽山华北落叶松早晚材径向生长对气候变化响应的分离效应[J]. 干旱区研究, 2022, 39(5): 1449-1463.
[35] [Guo Yili, Li Shuheng, Wang Jiachuan, et al. Response divergence of radial growth to climate change in earlywood and latewood of Larix principis-rupprechtii in Luya Mountain[J]. Arid Zone Research, 2022, 39(5): 1449-1463.]
[36] 张文涛, 江源, 王明昌, 等. 芦芽山阳坡不同海拔华北落叶松径向生长对气候变化的响应[J]. 生态学报, 2015, 35(19): 6481-6488.
[36] [Zhang Wentao, Jiang Yuan, Wang Mingchang, et al. Responses of radial growth in Larix principis-rupprechtii to climate change along an elevation gradient on the southern slope of Luya Mountain[J]. Acta Ecologica Sinica, 2015, 35(19): 6481-6488.]
[37] 张文涛, 江源, 王明昌, 等. 芦芽山阳坡不同海拔白杄径向生长对气候变暖的响应[J]. 植物生态学报, 2013, 37(12): 1142-1152.
[37] [Zhang Wentao, Jiang Yuan, Wang Mingchang, et al. Responses of radial growth to climate warming in Picea meyeri trees growing at different elevations on the southern slope of Luya Mountain[J]. Chinese Journal of Plant Ecology, 2013, 37(12): 1142-1152.]
[38] 杨绕琼, 范泽鑫, 李宗善, 等. 滇西北玉龙雪山不同海拔云南松(Pinus yunnanensis)径向生长对气候因子的响应[J]. 生态学报, 2018, 38(24): 8983-8991.
[38] [Yang Raoqiong, Fan Zexin, Li Zongshan, et al. Radial growth of Pinus yunnanensis at different elevations and their responses to climatic factors in the Yulong Snow Mountain, Northwest Yunnan, China[J]. Acta Ecologica Sinica, 2018, 38(24): 8983-8991.]
[39] 华亚伟, 张红娟, 刘康. 基于油松树轮重建陕西省镇安县165年以来3—4月平均最高气温[J]. 应用生态学报, 2020, 31(2): 381-387.
[39] [Hua Yawei, Zhang Hongjuan, Liu Kang. Reconstruction of the March-April average maximum air temperature over 165 years based on Pinus tabuliformis tree-rings of Zhen’an County, Shaanxi Province, China[J]. Chinese Journal of Applied Ecology, 2020, 31(2): 381-387.]
[40] 翟盘茂, 余荣, 郭艳君, 等. 2015—2016年强厄尔尼诺过程及其对全球和中国气候的主要影响[J]. 气象学报, 2016, 74(3): 309-321.
[40] [Zhai Panmao, Yu Rong, Guo Yanjun, et al. The strong EI Nino in 2015-2016 and its dominant impacts on global and China’s climate[J]. Acta Meteorological Sinica, 2016, 74(3): 309-321.]
[41] 王闪闪, 王素萍, 冯建英. 2015年全国干旱状况及其影响与成因[J]. 干旱气象, 2015, 33(2): 382-389.
[41] [Wang Shanshan, Wang Suping, Feng Jianying. Drought events and its influence in 2015 in China[J]. Journal of Arid Meteorology, 2015, 33(2): 382-389.]
[42] 方克艳, 周非飞, 董志鹏, 等. 器测和树轮资料对厄尔尼诺—南方涛动指数的响应特征[J]. 第四纪研究, 2017, 37(5): 1064-1076.
[42] [Fang Keyan, Zhou Feifei, Dong Zhipeng, et al. Response characteristics of instrumental and tree-ring data to El Ni?o-Southern Oscillation Index[J]. Quaternary Sciences, 2017, 37(5): 1064-1076.]
[43] Mcphade M J, Zebiak S E, Glantz M H. ENSO as an integrating concept in Earth science[J]. Science, 2006, 314: 1740-1745.
[44] 周群, 陈文. 太阳活动11年周期变化对南海夏季风爆发的可能影响[J]. 热带气象学报, 2020, 36(1): 25-31.
[44] [Zhou Qun, Chen Wen. Possbile influences of the solar cycle on the onset of South China Sea Summer Monsoon[J]. Journal of Tropical Meteorology, 2020, 36(1): 25-31.]
[45] 杨柳, 李静茹, 彭剑峰, 等. 1801年以来河南尧山地区油松高温变化及影响机制[J]. 生态学报, 2021, 41(1): 79-91.
[45] [Yang Liu, Li Jingru, Peng Jianfeng, et al. Temperature variation and influence mechanism of Pinus tabulaeformis ring width recorded since 1801 at Yao Mountain, He’nan Province[J]. Acta Ecologica Sinica, 2021, 41(1): 79-91.]
[46] 郑泽煜, 靳立亚, 李金建, 等. 树轮记录的1808年以来神农架地区平均气温的变化[J]. 第四纪研究, 2021, 41(2): 334-345.
[46] [Zheng Zeyu, Jin Liya, Li Jinjian, et al. Variability of mean temperature since 1808 A. D. in Shennongjia Mountain area inferred from tree ring[J]. Quaternary Sciences, 2021, 41(2): 334-345.]
[47] 王蔚蔚, 张军辉, 戴冠华, 等. 利用树木年轮宽度资料重建长白山地区过去240年秋季气温的变化[J]. 生态学杂志, 2012, 31(4): 787-793.
[47] [Wang Weiwei, Zhang Junhui, Dai Guanhua, et al. Variation of autumn temperature over the past 240 years in Changbai Mountains of Northeast China: A reconstruction with tree-ring records[J]. Chinese Journal of Ecology, 2012, 31(4): 787-793.]
文章导航

/