水土资源

时空克里金评估河套灌区土壤盐分时空格局

  • 孙贯芳 ,
  • 高照良 ,
  • 朱焱 ,
  • 杨金忠 ,
  • 屈忠义
展开
  • 1.西北农林科技大学水土保持研究所,陕西 杨凌 712100
    2.武汉大学水资源与水电工程科学国家重点实验室,湖北 武汉 430072
    3.内蒙古农业大学水利与土木建筑工程学院,内蒙古 呼和浩特 010018
孙贯芳(1989-),男,助理研究员,主要研究方向为农业水土资源与环境. E-mail: gfsun1990@126.com
朱焱. E-mail:zyan0701@163.com

收稿日期: 2022-08-12

  修回日期: 2022-10-12

  网络出版日期: 2023-03-08

基金资助

国家重点研发计划项目(2021YFD1900805);中央高校基本科研业务费专项资金(2452021081);内蒙古自治区科技成果转化专项资金(2021CG0022)

Spatio-temporal patterns of soil salinity in Hetao Irrigation District based on spatio-temporal Kriging

  • Guanfang SUN ,
  • Zhaoliang GAO ,
  • Yan ZHU ,
  • Jinzhong YANG ,
  • Zhongyi QU
Expand
  • 1. Institute of Soil and Water Conservation, Northwest A & F University, Yangling 712100, Shaanxi, China
    2. State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, Hubei, China
    3. College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot 010018, Inner Mongolia, China

Received date: 2022-08-12

  Revised date: 2022-10-12

  Online published: 2023-03-08

摘要

区域土壤盐分时空变异性大,采用经典统计和地统计方法无法准确判断取样时间不规则、空间位置不一致的土壤盐分的时空变化趋势。本文以内蒙古河套灌区隆胜研究区68个监测点0~1.8 m土壤剖面4582个土壤盐分数据为基础,利用时空地统计方法分析区域土壤盐分时空变化特征,比较时空克里金较传统空间克里金插值的精度提升效果,并验证时空地统计方法在监测点减少50%情况下预测区域盐分时空动态的能力。结果表明:(1) 该研究区土壤盐分空间变异系数的变化范围是0.43~1.14,为中强变异,0~0.6 m根系层生育期积盐、非生育期脱盐,0.6~1.8 m土壤剖面生育期脱盐、非生育期积盐、农田土壤盐分有明显的季节性规律。(2) 和度量模型能较好拟合盐分时空经验半方差,各层土壤盐分预测值和观测值间的均方根误差RMSE均小于0.21 dS·m-1,较传统空间克里金的RMSE小0.02~0.09 dS·m-1。(3) 采用该方法在减少50%监测点情况下确定的土壤盐渍化分布与所有取样点确定的结果一致性较高,0~0.6 m和0.6~1.2 m土壤盐分面积间的相对误差MRE分别为-13.20%和-8.35%,RMSE为466.67 hm2和494.43 hm2,决定系数R2为0.79和0.72。时空克里金同时利用了土壤盐分时间和空间上的更多信息,实现了稀疏盐分监测点数据集土壤盐分时空动态的精确估计,可极大提高区域土壤盐分时空格局监测的效率。

本文引用格式

孙贯芳 , 高照良 , 朱焱 , 杨金忠 , 屈忠义 . 时空克里金评估河套灌区土壤盐分时空格局[J]. 干旱区研究, 2023 , 40(2) : 182 -193 . DOI: 10.13866/j.azr.2023.02.03

Abstract

For maintaining crop yield in salt-affected dry agricultural settings, monitoring and analyzing spatio-temporal dynamics of soil salinity over broad areas is crucial yet challenging due to its high variability. The most popular techniques for evaluating spatial distribution patterns and temporal trends are classical statistical analysis and traditional geostatistical analysis, but they are not suitable for accurately capturing spatio-temporal trends of soil salinity due to irregular sampling time and inconsistent spatial position during sampling time. Spatio-temporal Kriging is an extension of spatial geostatistics to space-time geostatistics and may overcome this problem effectively because its model covariance/variance is a function of both space and time. However, its application in spatio-temporal modeling and prediction of regional soil salinity is still unclear. Based on 4582 soil salinity data of 0-1.8 m soil profiles from 68 monitoring locations in the Longsheng study area of Hetao Irrigation District, Inner Mongolia, spatio-temporal variation characteristics of regional soil salinity using a spatio-temporal geostatistical method, and spatio-temporal Kriging interpolation accuracy was compared with traditional spatial Kriging interpolation. Furthermore, the ability of spatio-temporal Kriging to obtain regional soil salinity dynamics was verified using less than half of the original monitoring locations. The results showed that the spatial variation coefficient of soil salt in the study area ranged from 0.43 to 1.14, which was categorized as medium to strong variability. Regional averaged soil salinity dynamics had obvious seasonal variation characteristics, and the root zone (0-0.6 m) soil salinity accumulated in the crop growing season and desalted in the fallow season, while the deep soil salinity (0.6-1.8 m) was the opposite. The sum-metric model can fit the temporal and spatial experience semi-variance of soil salinity well, and the root mean square error (RMSE) between the predicted value and observed value of soil salinity in each layer was less than 0.21 dS·m-1, which was 0.02-0.09 dS·m-1 less than that of traditional spatial Kriging. The areas of different soil salinity determined by 32 sparse monitoring locations were in good agreement with those determined by all sampling sites, and the mean relative error between areas of different soil salinity for 0-0.6 m and 0.6-1.2 m were -13.20% and -8.35%, respectively. Similarly, the respective RMSE were 466.67 hm2 and 494.43 hm2 and the determination coefficient (R2) were 0.79 and 0.72, indicating that spatial distribution of soil salinity obtained by sparse monitoring locations is consistent with the results of all sampling locations. Spatio-temporal Kriging significantly improves the prediction accuracy of soil salinity compared with ordinary Kriging, since it uses more information on soil salinity in time and space. The accurate estimation of spatio-temporal dynamics of soil salinity in the data set of sparse monitoring points was realized, which can greatly improve the monitoring efficiency of the spatio-temporal pattern of soil salinity in the region.

参考文献

[1] Sun G, Zhu Y, Ye M, et al. Development and application of long-term root zone salt balance model for predicting soil salinity in arid shallow water table area[J]. Agricultural Water Management, 2019, 213(3): 486-498.
[2] 史海滨, 杨树青, 李瑞平, 等. 内蒙古河套灌区节水灌溉与水肥高效利用研究展望[J]. 灌溉排水学报, 2020, 39(11): 1-12.
[2] [Shi Haibin, Yang Shuqing, Li Ruiping, et al. Water-saving irrigation and utilization efficiency of water and fertilizer in Hetao Irrigation District of Inner Mongolia: Prospect for future research[J]. Journal of Irrigation and Drainage, 2020, 39(11): 1-12.]
[3] Zheng Z, Zhang F, Ma F, et al. Identifying change in spatial accumulation of soil salinity in an inland river watershed, China[J]. Science of the Total Environment, 2018, 621: 177-185.
[4] Zheng Z, Zhang F, Ma F, et al. Spatiotemporal changes in soil salinity in a drip-irrigated field[J]. Geoderma, 2009, 149: 243-248.
[5] 徐英. 土壤水盐时空变异的稳健性分析和条件模拟研究[D]. 呼和浩特: 内蒙古农业大学, 2002.
[5] [Xu Ying. Conditional Simulation and Robust Analysis of Time-space Variability of Soil Water and Salt[D]. Hohhot: Inner Mongolia Agricultural University, 2002.]
[6] 陈亚新, 徐英, 魏占民, 等. 基于稳健统计学的水盐空间变差函数逼近方法[J]. 水利学报, 2004, 35(9): 46-51.
[6] [Chen Yaxin, Xu Ying, Wei Zhanmin, et al. Approximation method for spatial variogram of water and salinity in soil based on robust statistics[J]. Journal of Hydraulic Engineering, 2004, 35(9): 46-51.]
[7] 刘全明. 非参数统计与人工智能技术在水土空间变异中的应用研究[D]. 呼和浩特: 内蒙古农业大学, 2009.
[7] [Liu Quanming. Application of Non-parametric Statistics and Artificial Intelligence Technology in Spatial Variability of Water and Soil[D]. Hohhot: Inner Mongolia Agricultural University, 2009.]
[8] 史海滨, 吴迪, 闫建文, 等. 盐渍化灌区节水改造后土壤盐分时空变化规律研究[J]. 农业机械学报, 2020, 51(2): 318-331.
[8] [Shi Haibin, Wu Di, Yan Jianwen, et al. Spatial-temporal variation of soil salinity after water saving transformation in salinized Irrigation District[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(2): 318-331.]
[9] 王瑞萍, 万核洋, 陈帅, 等. 河套灌区乌拉特灌域春季土壤盐碱化空间分布特征[J]. 农业工程学报, 2021, 37(15): 105-113.
[9] [Wang Ruiping, Wan Heyang, Chen Shuai, et al. Spatial distribution pattern of soil salinization in farmland of Wulate sub-irrigation areas in Hetao Irrigation District in Inner Mongolia in spring[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(15): 105-113.]
[10] Snepvangers J J J C, Heuvelink G B M, Huisman J A. Soil water content interpolation using spatio-temporal Kriging with external drift[J]. Geoderma, 2003, 112: 253-271.
[11] Hamzehpour N, Bogaert P. Improved spatiotemporal monitoring of soil salinity using filtered Kriging with measurement errors: An application to the West Urmia Lake, Iran[J]. Geoderma, 2017, 295: 22-33.
[12] Ruybal C J, Hoguel T S, McCray J E. Evaluation of Groundwater Levels in the Arapahoe Aquifer Using Spatiotemporal Regression Kriging[J]. Water Resources Research, 2019, 55: 2820-2837.
[13] Bogaert P. Comparison of Kriging techniques in a space-time context[J]. Mathematical Geology, 1996, 28: 73-84.
[14] Varouchakis E A, Hristopulos D T. Comparison of spatiotemporal variogram functions based on a sparse dataset of groundwater level variations[J]. Spatial Statistics, 2019, 34: 1-18.
[15] Gr?ler B, Pebesma E, Heuvelink G. Spatio-temporal interpolation using gstat[J]. The R Journal, 2016, 8: 204-218.
[16] Hu H, Hu Z, Zhong K, et al. Satellite-based high-resolution mapping of ground-level PM2.5 concentrations over East China using a spatiotemporal regression Kriging model[J]. Science of The Total Environment, 2019, 672: 479-490.
[17] Cressie N, Huang H C. Classes of nonseparable, Spatio-temporal stationary covariance functions[J]. Journal of the American Statistical Association, 1999, 94: 1330-1339.
[18] Raja N B, Aydin O, Türko?lu N, et al. Space-time Kriging of precipitation variability in Turkey for the period 1976-2010[J]. Theoretical and Applied Climatology, 2016, 129: 293-304.
[19] Varouchakis E A, Theodoridou P G, Karatzas G P. Spatiotemporal geostatistical modeling of groundwater levels under a Bayesian framework using means of physical background[J]. Journal of Hydrology, 2019, 575: 487-498.
[20] Yang Y, Wu J, Christakos G. Prediction of soil heavy metal distribution using spatiotemporal Kriging with trend model[J]. Ecological Indicators, 2015, 56: 125-133.
[21] Douaik A, Van Meirvenne M, Tóth T. Soil salinity mapping using spatio-temporal Kriging and Bayesian maximum entropy with interval soft data[J]. Geoderma, 2005, 128: 234-248.
[22] Gasch C K, Hengl T, Gr?ler B, et al. Spatio-temporal interpolation of soil water, temperature, and electrical conductivity in 3D + T: The Cook Agronomy Farm data set[J]. Spatial Statistics, 2015, 14: 70-90.
[23] 孙贯芳. 干旱区多尺度土壤盐分动态及长期均衡模型研究[D]. 武汉: 武汉大学, 2020.
[23] [Sun Guanfang. Study on Soil Salinity Dynamics at Multiple Scales and Long-term Solute Balance Models in Arid Area[D]. Wuhan: Wuhan University, 2020.]
[24] Sun G, Zhu Y, Ye M, et al. Regional soil salinity spatiotemporal dynamics and improved temporal stability analysis in arid agricultural areas[J]. Journal of Soils and Sediments, 2022, 22: 272-292.
[25] 张仁铎. 空间变异理论及应用[M]. 北京: 科学出版社, 2005: 27-31.
[25] [Zhang Renduo. Spatial Variation Theory and Its Application[M]. Beijing: Science Press, 2005: 27-31.]
[26] Hu W, Shao M, Han F, et al. Watershed scale temporal stability of soil water content[J]. Geoderma, 2010, 158: 181-198.
[27] 杨勇, 梅杨, 张楚天, 等. 基于时空克里格的土壤重金属时空建模与预测[J]. 农业工程学报, 2014, 30(21): 249-255.
[27] [Yang Yong, Mei Yang, Zhang Chutian, et al. Spatio-temporal modeling and prediction of soil heavy metal based on spatio-temporal Kriging[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(21): 249-255.]
[28] 雷志栋, 杨诗秀, 谢森传. 土壤水动力学[M]. 北京: 清华大学出版社, 1988: 334-337.
[28] [Lei Zhidong, Yang Shixiu, Xie Senchuan. Soil Hydrodynamics[M]. Beijing: Tsinghua University Press, 1988: 334-337.]
[29] 梅杨. 时空克里格方法关键技术及其应用研究[D]. 武汉: 华中农业大学, 2016.
[29] [Mei Yang. Key Technology and Its Application for Spatio-temporal Kriging[D]. Wuhan: Huazhong Agricultural University, 2016.]
[30] 孙贯芳, 屈忠义, 杜斌, 等. 不同灌溉制度下河套灌区玉米膜下滴灌水热盐运移规律[J]. 农业工程学报, 2017, 33(12): 144-152.
[30] [Sun Guanfang, Qu Zhongyi, Du Bin, et al. Water-heat-salt effects of mulched drip irrigation maize with different irrigation scheduling in Hetao Irrigation District[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(12): 144-152.]
[31] Yang Y, Christakos G, Yang X, et al. Spatiotemporal characterization and mapping of PM2.5 concentrations in southern Jiangsu Province, China[J]. Environmental Pollution, 2018, 234: 794-803.
文章导航

/