水土资源

基于深度学习的玛纳斯土地利用时空格局变化与预测

  • 王娇娇 ,
  • 尹小君 ,
  • 刘陕南 ,
  • 王帝盟
展开
  • 1.石河子大学信息科学与技术学院,新疆 石河子 832000
    2.兵团空间信息工程技术研究中心,新疆 石河子 832000
王娇娇(1996-),女,硕士研究生,主要从事空间遥感土地利用研究. E-mail: 2272745959@qq.com

收稿日期: 2022-07-04

  修回日期: 2022-08-19

  网络出版日期: 2023-02-24

基金资助

国家重点研发计划项目(2017YFB0504203);石河子大学国际合作项目(GJHZ201905);兵团社科基金项目(20YB23)

Study on the change and prediction of spatiotemporal pattern of land use in Manasi region based on deep learning

  • Jiaojiao WANG ,
  • Xiaojun YIN ,
  • Shannan LIU ,
  • Dimeng WANG
Expand
  • 1. College of Information Science and Technology, Shihezi University, Shihezi 832000, Xinjiang, China
    2. Geospatial Information Engineering Research Center, Xinjiang, Shihezi 832000, China

Received date: 2022-07-04

  Revised date: 2022-08-19

  Online published: 2023-02-24

摘要

土地利用时空格局变化与预测对土地资源管理与优化至关重要。本文基于遥感时空序列数据,协同景观指数与深度学习的长短时记忆网络(Long-Short Term Memory,LSTM)模型,对玛纳斯进行长时间序列土地利用时空格局演变特征分析和预测。结果表明:(1) 1992—2020年耕地、草地和建设用地增加,林地、水域和未利用地减少。(2) 耕地破碎化程度降低,林地和水域的景观指数轻微波动;草地破碎化程度降低,形状趋于规则化;建设用地处于持续扩张状态,破碎化程度加深,形状趋于复杂;未利用地破碎化程度增加,但形状趋于规则化。(3) 比较了LSTM模型、多层感知人工神经网络(Multi-Layer Perception Artifical Neural Network,MLP-ANN)模型、逻辑回归(Logistic Regression,LR)模型和CA-Markov模型的预测精度。LSTM模型的Kappa系数为95.31%,较其他模型准确度高,符合实际土地利用格局分布。LSTM模型表明2025年土地利用类型可能仍以耕地、草地和未利用地为主。

本文引用格式

王娇娇 , 尹小君 , 刘陕南 , 王帝盟 . 基于深度学习的玛纳斯土地利用时空格局变化与预测[J]. 干旱区研究, 2023 , 40(1) : 69 -77 . DOI: 10.13866/j.azr.2023.01.08

Abstract

Land use change and prediction are crucial for land resource management and optimization. In this paper, based on remote sensing spatial and temporal series data, a synergistic landscape index and long short-term memory (LSTM) model were used to characterize and predict the evolution of spatial and temporal patterns of land use in the Manasi region over a long time series. Results showed that (1) from 1992 to 2020, the cropland, grassland, and building land increased, and tree cover, water bodies, and unused land decreased. (2) The degree of fragmentation of arable land gradually decreased. The landscape indices of tree cover and water bodies were in a state of slight fluctuation. Grassland aggregation increased, fragmentation decreased, and the shape exhibited regularization. The landscape index of building land showed the most dramatic state of continuous expansion, with a deepening fragmentation and a tendency for complex shapes. The fragmentation of unused land gradually increased, but the shape tended to be regular. (3) Different models for predicting land use change, including the LSTM, multi-layer perception artificial neural network, logistic regression, and CA-Markov models, were compared. The Kappa coefficient of the LSTM model was 95.31%, which is more accurate than that of other models and consistent with the actual land use pattern. The LSTM model suggests that in 2025, land use types will still be dominated by cropland, grassland, and unused land.

参考文献

[1] Ansari A, Golabi M H. Prediction of spatial land use changes based on LCM in a GIS environment for Desert Wetlands: A case study Meighan Wetland, Iran[J]. International Soil and Water Conservation Research, 2019, 7(1): 64-70.
[2] 李华林, 白林燕, 冯建中, 等. 新疆叶尔羌河流域胡杨林时空格局特征[J]. 生态学报, 2019, 39(14): 5080-5094.
[2] [Li Hualin, Bai Linyan, Feng Jianzhong, et al. Analysis of spatio-temporal characteristics of Populus euphratica forests in the Yarkand River Basin, Xinjiang[J]. Acta Ecologica Sinica, 2019, 39(14): 5080-5094.]
[3] 刘斌寅, 赵明松, 卢宏亮, 等. 1985—2015年淮北市土地利用变化特征及其预测研究[J]. 土壤通报, 2019, 50(4): 807-814.
[3] [Liu Binyin, Zhao Mingsong, Lu Hongliang, et al. Research on the characteristics and prediction of land use change in Huaibei from 1985 to 2015[J]. Chinese Journal of Soil Science, 2019, 50(4): 807-814.]
[4] 刘根林, 闫冰, 赵东升, 等. 2003—2018年瑞兴于地区土地利用景观格局时空演变及驱动因素[J]. 水土保持研究, 2022, 29(3): 235-243.
[4] [Liu Genlin, Yan Bing, Zhao Dongsheng, et al. Spatiotemporal evolution of landscape pattern of land use and its driving factors in Ruijin-Xingguo-Yudu Region from 2003 to 2018[J]. Research of Soil and Water Conservation, 2022, 29(3): 235-243.]
[5] Stehfest E, van Zeist W, Valin H, et al. Key determinants of global land-use projections[J]. Nature Communications, 2019, 10(1): 1-10.
[6] Bose A, Chowdhury I R. Monitoring and modeling of spatio-temporal urban expansion and land-use/land-cover change using markov chain model: A case study in Siliguri Metropolitan area, West Bengal, India[J]. Modeling Earth Systems and Environment, 2020, 6(4): 2235-2249.
[7] 乔治, 蒋玉颖, 贺曈, 等. 土地利用变化模拟:进展、挑战和前景[J]. 生态学报, 2022, 42(13): 5165-5176.
[7] [Qiao Zhi, Jiang Yuying, He Tong, et al. Land use change simulation: Progress, challenges, and prospect[J]. Acta Ecologica Sinica, 2022, 42(13): 5165-5176.]
[8] Tripathy P, Kumar A. Monitoring and modelling spatio-temporal urban growth of Delhi using Cellular Automata and geoinformatics[J]. Cities, 2019, 90: 52-63.
[9] 朱增云, 阿里木江·卡斯木. 基于CA-Markov模型的呼图壁县土地利用景观格局预测研究[J]. 生态科学, 2020, 39(1): 136-145.
[9] [Zhu Zengyun, Alimujiang Kasimu. Prediction of land use landscape pattern in Hutubi County based on CA-Markov model[J]. Ecological Science, 2020, 39(1): 136-145.]
[10] 韩海青. 中亚五国1992—2015年LUCC特征及2030年LUCC预测研究[D]. 西安: 西北大学, 2021.
[10] [Han Haiqing. The Land-Use and Land-Cover Change Characteristics from 1992 to 2015 and Predict in 2030 in Five Central Asian Countries[D]. Xi’an: Northwest University, 2021.]
[11] 康俊锋, 李爽, 方雷. 云环境下基于CA-Markov的土地利用变化预测方法[J]. 武汉大学学报(信息科学版), 2020, 45(7): 1021-1026.
[11] [Kang Junfeng, Li Shuang, Fang Lei. Land use change prediction method based on CA-Markov model under cloud computing environment[J]. Geomatics and Information Science of Wuhan University, 2020, 45(7): 1021-1026.]
[12] 陈理庭, 蔡海生, 张婷, 等. 基于Markov-FLUS模型的饶河流域土地利用多情景模拟分析[J]. 生态学报, 2022, 10(42): 3947-3958.
[12] [Chen Liting, Cai Haisheng, Zhang Ting, et al. Land use multi-scenario simulation analysis of Rao River Basin based on Markov-FLUS model[J]. Acta Ecologica Sinica, 2022, 10(42): 3947-3958.]
[13] Liang Xun, Guan Qingfeng, Clarke Keith C, et al. Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model: A case study in Wuhan, China[J]. Computers, Environment and Urban Systems, 2021, 85: 101569.
[14] Mu L, Wang L, Wang Y, et al. Urban land use and land cover change prediction via self-adaptive cellular based deep learning with multi-sourced data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(12): 5233-5247.
[15] Sefrin O, Riese F M, Keller S. Deep Learning for Land Cover Change Detection[J]. Remote Sensing, 2021, 13(1): 78.
[16] Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural computation, 1997, 9(8): 1735-1780.
[17] 杨倩, 秦莉, 高培, 等. 基于EEMD-LSTM模型的天山北坡经济带年降水量预测[J]. 干旱区研究, 2021, 38(5): 1235-1243.
[17] [Yang Qian, Qin Li, Gao Pei, et al. Prediction of annual precipitation in the Northern Slope Economic Belt of Tianshan Mountains based on a EEMD-LSTM model[J]. Arid Zone Research, 2021, 38(5): 1235-1243.]
[18] 鞠洪润, 左丽君, 张增祥, 等. 中国土地利用空间格局刻画方法研究[J]. 地理学报, 2020, 75(1): 143-159.
[18] [Ju Hongrun, Zuo Lijun, Zhang Zengxiang, et al. Methods research on describing the spatial pattern of land use types in China[J]. Acta Geographica Sinica, 2020, 75(1): 143-159.]
[19] 王甜, 闫金凤, 乔海燕. 马来西亚吉隆坡市土地利用变化特征分析与预测[J]. 水土保持通报, 2020, 40(5): 268-275.
[19] [Wang Tian, Yan Jinfeng, Qiao Haiyan. Analysis and prediction of land-use change characteristics in Kuala Lumpur, Malaysia[J]. Bulletin of Soil and Water Conservation, 2020, 40(5): 268-275.]
[20] 贺可, 吴世新, 周宏飞, 等. 玛纳斯河流域两种典型土地利用变化分析[J]. 干旱区研究, 2018, 35(4): 954-962.
[20] [He Ke, Wu Shixin, Zhou Hongfei, et al. Two typical land use modes in the Manas River Basin[J]. Arid Zone Research, 2018, 35(4): 954-962.]
[21] Phan T N, Kuch V, Lehnert L W. Land cover classification using Google Earth Engine and Random Forest Classifier: The role of image composition[J]. Remote Sensing, 2020, 12(15): 12152411.
[22] Mohammad P, Goswami A, Chauhan S, et al. Machine learning algorithm based prediction of land use land cover and land surface temperature changes to characterize the surface urban heat island phenomena over Ahmedabad city, India[J]. Urban Climate, 2022, 42: 101116.
[23] 朱磊, 夏鑫鑫, 杨爱民, 等. 玛纳斯河流域绿洲区耕地扩张的CA-Markov模型参数敏感性分析[J]. 干旱区研究, 2020, 37(5): 1327-1336.
[23] [Zhu Lei, Xia Xinxin, Yang Aimin, et al. Expansion of cultivated land in the oasis area of the Manas River Basin sensitivity analysis of CA-Markov model parameters[J]. Arid Zone Research, 2020, 37(5): 1327-1336.]
[24] 康紫薇, 张正勇, 位宏, 等. 基于土地利用变化的玛纳斯河流域景观生态风险评价[J]. 生态学报, 2020, 40(18): 6472-6485.
[24] [Kang Ziwei, Zhang Zhengyong, Wei Hong, et al. Landscape ecological risk assessment in Manas River Basin based on land use change[J]. Acta Ecologica Sinica, 2020, 40(18): 6472-6485.]
[25] 林丽, 樊辉, 金缘. 山区县域土地利用/覆被变化多尺度多模型模拟对比——以云南省勐腊县为例[J]. 山地学报, 2020, 38(4): 630-642.
[25] [Lin Li, Fan Hui, Jin Yuan. Multi-Scale and multi-model simulation of land use/land cover change in the mountainous county: A case study of Mengla county in Yunnan province, China[J]. Mountain Research, 2020, 38(4): 630-642.]
[26] 谢凌凌, 许进龙, 臧俊梅, 等. 基于Markov-FLUS模型的广西土地利用变化模拟预测[J]. 水土保持研究, 2022, 29(2): 249-254.
[26] [Xie Lingling, Xu Jinlong, Zang Junmei, et al. Simulation and prediction of land use change in Guangxi based on Markov-FLUS model[J]. Research of Soil and Water Conservation, 2022, 29(2): 249-254.]
[27] Kucsicsa G, Popovici E, B?lteanu D, et al. Future land use/cover changes in Romania: Regional simulations based on CLUE-S model and CORINE land cover database[J]. Landscape and Ecological Engineering, 2019, 15(1): 75-90.
文章导航

/