沙地潜水含水层不同时间段抽水降深的差异性分析
收稿日期: 2022-02-16
修回日期: 2022-07-06
网络出版日期: 2023-02-24
基金资助
国家重点研发计划(2018YFC0406400);内蒙古自治区科技重大专项(2019ZD0009);教育部创新团队发展计划(IRT-17R60);科技部重点领域科技创新团队(2015RA4013);内蒙古自治区草原英才产业创新创业人才团队
Analysis of differences in pumping depth in sand diving aquifers over different time periods
Received date: 2022-02-16
Revised date: 2022-07-06
Online published: 2023-02-24
抽水降深过程是计算区域水文地质参数的重要观测资料,为揭示毛乌素沙地海流兔河流域第四系潜水含水层不同时段的水文地质特征,明晰沙地潜水含水层降深差异的主控因子,本文对同一口井不同时间的4次抽水降深差异进行了系统分析。在基于抽水井附近的逐小时监测水位,首次将Bland-Altman法引入了对抽水降深过程间的差异性辨析,并利用配线法和水位恢复法求解了第四系含水层的水文地质参数来进行差异性佐证。最后,本文以流域尺度为研究系统,通过对含水层厚度、水力坡度、地下水储量变化和降水补给分析,辨析了抽水降深差异产生的主要原因。研究结果得到毛乌素沙地海流兔河流域第四系潜水含水层导水系数变化范围为3.00~4.85 m2·h-1,且抽水前降水对包气带的下渗补给是产生抽水降深差异的主控因素。
周生辉 , 刘廷玺 , 段利民 , 冀如 , 刘小勇 . 沙地潜水含水层不同时间段抽水降深的差异性分析[J]. 干旱区研究, 2023 , 40(1) : 51 -58 . DOI: 10.13866/j.azr.2023.01.06
We carried out long-term water level monitoring of a well in the quaternary sandy aquifer of Maowusu Sandy Land in China, selected four pumping processes of this well at different times in 1 year, analyzed the differences in the pumping and depth reduction processes, and systematically analyzed the possible factors of such differences. On the basis of multiple influencing factors, the main controlling factors of the differences in the depth of sandy diving aquifer were clarified, and the hydrogeological characteristics of the fourth-series diving aquifer in the Hailiutu River Basin at different times were effectively revealed. We introduced the Bland-Altman method to this study for the first time and used it to quantitatively analyze the difference between the pumping depth reduction processes. Moreover, we applied the traditional wiring method to solve hydrogeological parameters and the water level restoration method to solve the hydrogeological parameters of the quaternary aquifer for differentiation. Finally, this paper analyzed the main reasons for differences in the pumping depth by evaluating the aquifer thickness, hydraulic slope, groundwater reserves, and precipitation recharge at the watershed scale. Results showed that the variation range of water conductivity coefficient of the quaternary phreatic aquifer in Hailiutu River Basin of Mu Us Sandy Land is 3.00-4.85 m2·h-1 and the infiltration and replenishment of the vadose belt by precipitation before pumping is the main controlling factor for the differences in pumping depth.
Key words: pumping depth; difference; phreatic aquifer; hydrogeological parameter
[1] | Bunn Melissa I, Rudolph David L, Endres Anthony L, et al. Field observation of the response to pumping and recovery in the water table region of an unconfined aquifer[J]. Journal of Hydrology, 2011, 403(3-4): 307-320. |
[2] | 薛禹群, 吴吉春. 地下水动力学[M]. 第三版. 北京: 地质出版社, 2010. |
[2] | [Xue Yuqun, Wu Jichun. Groundwater Dynamics[M]. 3rd ed. Beijing: Geological Publishing House, 2010.] |
[3] | Zhang Zaiyong, Wang Wenke, Gon Chengchen, et al. Effects of non-isothermal flow on groundwater recharge in a semi-arid region[J]. Hydrogeology Journal, 2021, 29(2): 541-549. |
[4] | Hammond Patrick A, Reliable yields of public water-supply wells in the fractured-rock aquifers of central Maryland, USA[J]. Hydrogeology Journal, 2018, 26(1): 333-349. |
[5] | Li Peiyue, Qian Hui, Wu Jianhua, et al. Determining the optimal pumping duration of transient pumping tests for estimating hydraulic properties of leaky aquifers using global curve-fitting method: A simulation approach[J]. Environmental Earth Sciences, 2014, 71(1): 293-299. |
[6] | 赵全升, 胡舒娅, 王新民, 等. 辽河三角洲滨海湿地含水层水文地质参数获取的试验研究[J]. 地理科学, 2014, 34(12): 1533-1537. |
[6] | [Zhao Quansheng, Hu Shuya, Wang Xinmin, et al. Experimental study of aquifer hydrogeological parameter acquisition in coastal wetlands of Liaohe Delta[J]. Scientia Geographica Sinica, 2014, 34(12): 1533-1537.] |
[7] | 梁冰, 张柴, 刘磊, 等. 垃圾土现场渗透性测定与土水特性反演[J]. 岩土力学, 2021, 42(6): 1493-1500, 1511. |
[7] | [Liang Bing, Zhang Chai, Liu Lei, et al. Field permeability measurement of waste and inversion of soil-water characteristics[J]. Rock and Soil Mechanics, 2021, 42(6): 1493-1500, 1511.] |
[8] | Pozdniakov Sergey, Ivanov Pavel, Davis Paul, et al. Use of groundwater level fluctuations near an operating water supply well to estimate aquifer transmissivity[J]. Groundwater, 2021, 59(1): 49-58. |
[9] | Yang Zhi, Zhou Yangxiao, Wenninger Jochen, et al. Groundwater and surface-water interactions and impacts of human activities in the Hailiutu catchment, Northwest China[J]. Hydrogeology Journal, 2017, 25(5): 1341-1355. |
[10] | 周生辉, 刘廷玺, 段利民, 等. 毛乌素沙地海流兔河流域水文地质特征[J]. 中国沙漠, 2021, 41(5): 103-110. |
[10] | [Zhou Shenghui, Liu Tingxi, Duan Limin, et al. Hydrogeological characteristics of underwater aquifer in the Hailiutu River Basin[J]. Journal of Desert Research, 2021, 41(5): 103-110.] |
[11] | 李烨明, 谢代梁, 胡鹤鸣, 等. 基于超声波衰减效应的悬移质粒径分布反演[J]. 水力发电学报, 2020, 39(1): 21-30. |
[11] | [Li Yeming, Xie Dailiang, Hu Heming, et al. Inversion of particle size distributions of suspended loads based on ultrasonic attenuation effect[J]. Journal of Hydroelectric Engineering, 2020, 39(1): 21-30.] |
[12] | Hunt Bruce. Characteristics of unsteady flow to wells in unconfined and semi-confined aquifers[J]. Journal of Hydrology, 2006, 325(1-4): 154-163. |
[13] | Mishra P K, Neuman S P. Improved forward and inverse analyses of saturated-unsaturated flow toward a well in a compressible unconfined aquifer[J]. Water Resources Research, 2010, 46(7): 759-768. |
[14] | 陈晨, 文章, 梁杏, 等. 江汉平原典型含水层水文地质参数反演[J]. 地球科学, 2017, 42(5): 727-733. |
[14] | [Wen Zhang, Liang Xing, et al. Estimation of hydrogeological parameters for representative aquifers in Jianghan Plain[J]. Earth Science, 2017, 42(5): 727-733.] |
[15] | 白乐, 李怀恩, 何宏谋, 等. 煤矿开采区地表水-地下水耦合模拟[J]. 煤炭学报, 2015, 40(4): 931-937. |
[15] | [Bai Le, Li Huai’en, He Hongmou, et al. Integrated simulation of surface water and groundwater in a high intensive coal mining area[J]. Journal of China Coal Society, 2015, 40(4): 931-937.] |
[16] | 钱程, 穆文平, 邢渊, 等. 某气田石油类污染物运移数值模拟研究[J]. 环境工程, 2016, 34(4): 68-72, 131. |
[16] | [Qian Cheng, Mu Wenping, Xing Yuan, et al. Numerical simulation of petroleum contaminant transport in a field[J]. Environmental Engineering, 2016, 34(4): 68-72, 131.] |
[17] | Neville Christopher J, Kamp Garth van der. Using recovery data to extend the effective duration of pumping tests[J]. Groundwater, 2012, 50(5): 804-807. |
[18] | 范丹丹, 陈群, 亓立成, 等. 由抽水试验计算砂卵石含水层渗透系数的方法对比[J]. 水利水运工程学报, 2021, 43(4): 54-60. |
[18] | [Fan Dandan, Chen Qun, Qi Licheng, et al. Comparison of methods to calculate coefficient of permeability of sandy cobble aquifer based on pumping tests[J]. Hydro-Science and Engineering, 2021, 43(4): 54-60.] |
[19] | 王军辉, 王峰. 论抽水的降落漏斗范围、影响半径与环境影响范围[J]. 水利学报, 2020, 51(7): 827-834. |
[19] | [Wang Junhui, Wang Feng. Discussion on the range of groundwater depression cone,radius of influence and scope of environmental impacts during pumping[J]. Journal of Hydraulic Engineering, 2020, 51(7): 827-834.] |
[20] | Tamayo-Mas Elena, Bianchi Marco, Mansour Majdi. Impact of model complexity and multi-scale data integration on the estimation of hydrogeological parameters in a dual-porosity aquifer[J]. Hydrogeology Journal, 2018, 26(6): 1917-1933. |
[21] | Pozdniakov Sergey, Ivanov Pavel, Davis Paul, et al. Use of groundwater level fluctuations near an operating water supply well to estimate aquifer transmissivity[J]. Groundwater, 2021, 59(1): 49-58. |
[22] | 吴纲, 孙红月, 陈永珍, 等. 完整井定降深抽水非稳定流水位流量近似解[J]. 岩石力学与工程学报, 2017, 36(12): 3095-3101. |
[22] | [Wu Gang, Sun Hongyue, Chen Yongzhen, et al. An approximate solution of unsteady flow under fixed-drop pumping[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(12): 3095-3101.] |
[23] | Li Zhaofeng, Zhou Zhifang, Dai Yunfeng, et al. Contaminant transport in a largely-deformed aquitard affected by delayed drainage[J]. Journal of Pollutant Hydrology, 2019, 221: 118-126. |
[24] | 夏文则, 刘宗彦, 付法凯, 等. 井抽水地下水直线运动规律探讨[J]. 水文地质工程地质, 2012, 39(2): 138-140. |
[24] | [Xia Wenze, Liu Zongyan, Fu Fakai, et al. Study on the linear movement law of groundwater pumped from well[J]. Hydrogeology & Engineering Geology, 2012, 39(2): 138-140.] |
[25] | 孙蓉琳, 梁杏, 靳孟贵. 基于野外水力试验的玄武岩渗透性及尺度效应[J]. 岩土力学, 2006, 27(9): 1490-1494. |
[25] | [Sun Ronglin, Liang Xing, Jin Menggui. Permeability of basalt and its scale effect based on field hydraulic tests[J]. Rock and Soil Mechanics, 2006, 27(9): 1490-1494.] |
[26] | 蒋立群, 孙蓉琳, 王文梅, 等. 水力层析法与克立金法估算非均质含水层渗透系数场比较[J]. 地球科学, 2017, 42(2): 307-314. |
[26] | [Jiang Liqun, Sun Ronglin, Wang Wenmei, et al. Comparison of hydraulic tomography and kriging for estimating hydraulic conductivity of a heterogeneous aquifer[J]. Earth Science, 2017, 42(2): 307-314.] |
[27] | Henry Chris M, Allen Diana M, Huang Jianliang. Groundwater storage variability and annual recharge using well-hydrograph and GRACE satellite data[J]. Hydrogeology Journal, 2011, 19(4): 741-755. |
[28] | Chen Kuan-Hung, Hwang Cheinway, Chang Liang-Cheng, et al. Infiltration coefficient, percolation rate and depth-dependent specific yields estimated from 1.5 years of absolute gravity observations near a recharge lake in Pingtung, Taiwan[J]. Journal of Hydrology, 2021, 603(PartC): 127089. |
[29] | 杨文斌, 唐进年, 梁海荣, 等. 我国典型沙漠(地)流动风沙土的深层渗漏量及动态变化[J]. 中国科学: 地球科学, 2014, 44(9): 2052-2061. |
[29] | [Yang Wenbin, Tang Jinnian, Liang Hairong, et al. Deep soil water infiltration and its dynamic variation in the shifting sandy land of typical deserts in China[J]. Scientia Sinica(Terrae), 2014, 44(9): 2052-2061.] |
[30] | Kambuku Dwight, Tsujimura Maki, Kagawa Shigeyoshi, et al. Corroborating stable isotopic data with pumping test data to investigate recharge and groundwater flow processes in a fractured rock aquifer, Rivirivi Catchment, Malawi[J]. Environmental Earth Sciences, 2018, 77(226). https://doi.org/10.1007/s12665-018-7403-9. |
/
〈 | 〉 |