内蒙古地表冻融指数动态变化与驱动因素分析
收稿日期: 2022-04-19
修回日期: 2022-07-03
网络出版日期: 2023-01-17
基金资助
国家自然科学基金项目(41861014);内蒙古自治区自然科学基金项目(2020BS03042);内蒙古自治区自然科学基金项目(2020BS04009);内蒙古自治区重点研发和成果转化计划项目(2022YFDZ0061)
Dynamic changes and driving factors of the surface freeze-thaw index in Inner Mongolia
Received date: 2022-04-19
Revised date: 2022-07-03
Online published: 2023-01-17
基于内蒙古45个气象站点1980—2019年日均地表温度数据、结合中国第一代全球陆面再分析产品(CRA)数据以及NDVI数据,利用趋势分析法、相关性分析法和灰色关联度,对内蒙古近40 a地表冻融指数时空变化特征及驱动因素进行分析。研究表明:(1) SFI(地表冻结指数)年均值的空间分布特征表现出自西南向东北递增的规律,STI(地表融化指数)则反之,纬度是影响地表冻融指数空间分布的关键因子。研究期间SFI和STI分别呈现出显著下降和上升趋势,多年变化范围分别为956.1~1848.3 ℃·d和3717.6~4442.3 ℃·d,变化率分别为-156.4 ℃·d·(10a)-1和152.4 ℃·d·(10a)-1;与季节冻土区相比,多年冻土区的冻融指数对气候变暖的响应更加敏感。(2) 研究区近40 a土壤表层含水量、降水量、NDVI呈增加趋势,雪深呈减少趋势,但年际变化表现出不同的空间差异性,多年冻土区呈暖干化发展趋势,季节冻土区呈暖湿化发展趋势。(3) 地表冻融指数与影响因素以负相关关系为主,SFI与影响因素在多年冻土区大部呈正相关关系,在季节冻土区大部呈负相关关系,STI则反之。内蒙古地表冻融指数变化受影响因素共同驱动,0.4 m土壤含水量是影响SFI变化的主导因素,NDVI是影响STI变化的主导因素。研究结果可为内蒙古冻土退化、农牧业生产等提供科学的参考。
张昊琛,萨楚拉,孟凡浩,罗敏,王牧兰,高红豆 . 内蒙古地表冻融指数动态变化与驱动因素分析[J]. 干旱区研究, 2022 , 39(6) : 1996 -2008 . DOI: 10.13866/j.azr.2022.06.29
Using the trend analysis, correlation analysis and gray correlation, the spatial and temporal variation characteristics and driving factors of the surface freezing index (SFI) and surface thawing index (STI) in Inner Mongolia over the past 40 years were analyzed based on the daily average surface temperature data of 45 meteorological stations in Inner Mongolia from 1980 to 2019, combined with China’s first-generation global land surface reanalysis product (CRA) data and the NDVI data. The study shows that the following: (1) the spatial distribution of annual mean values of the SFI had an increasing pattern from southwest to northeast, while the STI had the opposite pattern, and latitude was the key factor affecting the spatial distribution of the SFI and STI. The SFI and STI showed significant decreasing and increasing trends during the study period, with multi-year variations ranging from 956.1 to 1848.3 ℃·d and 3717.6 to 4442.3 ℃·d, respectively, and rates of change of -156.4 ℃·d·(10a)-1 and 152.4 ℃·d·(10a)-1. Compared with the seasonal permafrost zone, the freeze-thaw index in the multi-year permafrost zone was more sensitive to climate warming. (2) The soil SW content, precipitation, and NDVI in the study area showed an increasing trend, and the snow depth showed a decreasing trend over the last 40 years. However, the interannual variation showed different spatial variability, with a warm-dry trend in the multi-year permafrost area and a warm-wet trend in the seasonal permafrost area. The SFI, STI, and influencing factors are mainly negatively correlated. The SFI and the influencing factors were mostly positively correlated in the multi-year permafrost area and mostly negatively correlated in the seasonal permafrost area. The STI was the opposite of the SFI. The change of the SFI and STI in Inner Mongolia was driven by a combination of influencing factors, while 0.4 m of soil water content was the dominant factor affecting the change of the SFI, and NDVI was the dominant factor affecting the change of the STI. The results provide valuable references for permafrost degradation and the production of agriculture and livestock in Inner Mongolia.
[1] | 周幼吾. 中国冻土[M]. 北京: 科学出版社, 2000. |
[1] | [ Zhou Youwu. Permafrost in China[M]. Beijing: Science Press, 2000. ] |
[2] | 沈永平, 王国亚. IPCC第一工作组第五次评估报告对全球气候变化认知的最新科学要点[J]. 冰川冻土, 2013, 35(5): 1068-1076. |
[2] | [ Shen Yongping, Wang Guoya. Key findings and assessment results of IPCC WGI fifth assessment report[J]. Journal of Glaciology and Geocryology, 2013, 35(5): 1068-1076. ] |
[3] | 史培军, 孙劭, 汪明, 等. 中国气候变化区划(1961-2010年)[J]. 中国科学: 地球科学, 2014, 44(10): 2294-2306. |
[3] | [ Shi Peijun, Sun Shao, Wang Ming, et al. Climate change regionalization in China(1961-2010)[J]. Science China: Earth Sciences, 2014, 44(10): 2294-2306. ] |
[4] | Hoelzle M, Chinn T, Stumm D, et al. The application of glacier inventory data for estimating past climate change effects on mountain glaciers: A comparison between the European Alps and the Southern Alps of New Zealand[J]. Global & Planetary Change, 2007, 56(1): 69-82. |
[5] | Church J, Clark P, Cazenave A, et al. Climate change 2013:The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[R]. Computational Geometry, 2013. |
[6] | 陈博, 李建平. 近50年来中国季节性冻土与短时冻土的时空变化特征[J]. 大气科学, 2008, 32(3): 432-443. |
[6] | [ Chen Bo, Li Jianping. Characteristics of spatial and temporal variation of seasonal and short-term frozen soil in China in recent 50 years[J]. Chinese Journal of Atmospheric Sciences, 2008, 32(3): 432-443. ] |
[7] | 李倩. 全球变暖背景下冻土变化研究综述[J]. 吉林气象, 2013, 80(1): 25-28, 44. |
[7] | [ Li Qian. A review of research on permafrost change under the background of global warming[J]. Jilin Meteorology, 2013, 80(1): 25-28, 44. ] |
[8] | 刘秀, 李佳. 1960—2012年东北地区冻融指数时空变化研究[J]. 黑龙江科学, 2018, 9(20): 162-164. |
[8] | [ Liu Xiu, Li Jia. Research on temporal and spatial variation of freeze-thaw index in Northeast China during the past 1960-2012[J]. Heilongjiang Science, 2018, 9(20): 162-164. ] |
[9] | 秦大河. 中国气候与环境演变[J]. 资源环境与发展, 2007(3): 1-4. |
[9] | [ Qin Dahe. Climate and environmental evolution in China[J]. Resources Environment and Development, 2007(3): 1-4. ] |
[10] | 秦大河, 周波涛, 效存德. 冰冻圈变化及其对中国气候的影响[J]. 气象学报, 2014, 72(5): 869-879. |
[10] | [ Qin Dahe, Zhou Botao, Xiao Cunde. Progress in studies of cryospheric changes and their impacts on climate of China[J]. Acta Meteorological Sinica, 2014, 72(5): 869-879. ] |
[11] | Riseborough D W. Thawing and freezing indices in the activelayer[C]// Proceedings of the 8th Intemational Conference on Permafrost. Rotterdam: A. Balkema. 2003: 953-958. ] |
[12] | Peng X Q, Zhang T J, Frauenfeld O W, et al. Past and projected freezing/thawing indices in the Northern Hemisphere[J]. Journal of Applied Meteorology and Climatology, 2019, 58(3): 495-510. |
[13] | Sturm M, Holmgren J, Liston G E. A seasonal snow cover classification system for local to global applications[J]. Journal of Climate, 1995, 8(5): 1261-1283. |
[14] | Nelson F E, Outcalt S I. A computational method for prediction and regionalization of permafrost[J]. Arctic and Alpine Research, 19(3): 279-288. |
[15] | Frauenfeld O W, Zhang T, Mccreight J L. Northern hemisphere freezing/thawing index variations over the twentieth century[J]. International Journal of Climatology, 2010, 27(1): 47-63. |
[16] | Shi Y, Niu F, Lin Z, et al. Freezing/thawing index variations over the circum-arctic from 1901 to 2015 and the permafrost extent[J]. Science of the Total Environment, 2019, 660 (APR.10): 1294-1305. |
[17] | Liu L, Luo D L, Wang L, et al. Dynamics of freezing/thawing indices and frozen ground from 1900 to 2017 in the upper brahmaputra river basin, Tibetan Plateau[J]. Advances in Climate Change Research, 2021, (1): 6-17. |
[18] | Wu T, Qin Y, Wu X, et al. Spatiotemporal changes of freezing/thawing Indices and their response to recent climate change on the Qinghai-Tibet Plateau From 1980 to 2013[J]. Theoretical & Applied Climatology, 2018, 132(3): 1187-1199. |
[19] | Wang Rui, Zhu Qingke, Ma Hao. Changes in freezing and thawing indices over the source region of the Yellow River from 1980 to 2014[J]. Journal of Forestry Research, 2019, 30(1): 257-268. |
[20] | 苏玥, 张存厚, 阿木尔萨那, 等. 1981—2018年内蒙古典型草原季节性冻土对气候变化的响应[J]. 干旱区地理, 2022, 45(3): 684-694. |
[20] | [ Su Yue, Zhang Cunhou, Amursana, et al. Response of seasonal frozen soil to climate change on a typical steppe of Inner Mongolia during 1981-2018[J]. Arid Land Geography, 2022, 45(3): 684-694. ] |
[21] | 代海燕, 陈高娃, 吴建华, 等. 我国中高纬度地区冻融指数变化与冷暖急转现象[J]. 干旱区研究, 2020, 37(2): 275-281. |
[21] | [ Dai Haiyan, Chen Gaowa, Wu Jianhua, et al. The rate of warming is slowing and temperature is showing sharp changes in middle and high latitude regions[J]. Arid Zone Research, 2020, 37(2): 275-281. ] |
[22] | 乌日汗. 2001—2016年内蒙古植被动态特征及其对气候变化的响应[D]. 呼和浩特: 内蒙古师范大学, 2020. |
[22] | [ Uri Khan. Dynamic Characteristics of Vegetation in Inner Mongolia from 2001 to 2016, and Its Response to Climate Change[D]. Hohhot: Inner Mongolia Normal University, 2020. ] |
[23] | 王子玉, 许端阳, 杨华, 等. 1981—2010年气候变化和人类活动对内蒙古地区植被动态影响的定量研究[J]. 地理科学进展, 2017, 36(8): 1025-1032. |
[23] | [ Wang Ziyu, Xu Duanyang, Yang Hua, et al. Impacts of climate change and human activities on vegetation dynamics in Inner Mongolia, 1981-2010[J]. Progress in Geography, 2017, 36(8): 1025-1032. ] |
[24] | 刘侦海, 王绍强, 陈斌. 2000—2015年中蒙俄经济走廊东段冻土时空变化及植被响应[J]. 地理学报, 2021, 76(5): 1231-1244. |
[24] | [ Liu Zhenhai, Wang Shaoqiang, Chen Bin. Spatial and temporal variations of frozen ground and its vegetation response in the eastern segment of China-Mongolia-Russia economic corridor from 2000 to 2015[J]. Acta Geographical Sinica, 2021, 76(5): 1231-1244.] |
[25] | 曹斌, 张廷军, 彭小清, 等. 黑河流域年冻融指数及其时空变化特征分析[J]. 地球科学进展, 2015, 30(3): 357-366. |
[25] | [ Cao Bin, Zhang Tingjun, Peng Xiaoqing, et al. Spatial variability of freezing-thawing index over the Heihe River Basin[J]. Advances in Earth Science, 2015, 30(3): 357-366. ] |
[26] | Klene A E, Nelson F E, Hinkel SKM. The N-factor in natural landscapes: Variability of air and soil-surface temperatures, Kuparuk River Basin, Alaska, U.S.A[J]. Arctic Antarctic & Alpine Research, 2001, 33(2): 140-148. |
[27] | 索玉霞, 王正兴, 刘闯, 等. 中亚地区1982年至2002年植被指数与气温和降水的相关性分析[J]. 资源科学, 2009, 31(8): 1422-1429. |
[27] | [ Suo Yuxia, Wang Zhengxing, Liu Chuang, et al. Relationship between NDVI and precipitation and temperature in Middle Asia during 1982-2002[J]. Resources Science, 2009, 31(8): 1422-1429. ] |
[28] | Deng J L. Control problems of grey systems[J]. Systems & Control Letters, 1982, 1(5): 288-294. |
[29] | Wang Q, Lv W, Li B, et al. Annual ecosystem respiration is resistant to changes in freeze-thaw periods in semi-arid permafrost[J]. Global Change Biology, 2020, 26(4): 2630-2641. |
[30] | 郭阳, 张廷军, 曹琳, 等. 黑河上游地表冻融指数与径流关系[J]. 水土保持通报, 2018, 38(3): 222-227. |
[30] | [ Guo Yang, Zhang Tingjun, Cao Lin, et al. Relationship between surface freezing/thawing index and runoff in upper reaches of Heihe River[J]. Bulletin of Soil and Water Conservation, 2018, 38(3): 222-227. ] |
[31] | 赵亚茹. 牡丹岭地区不同土地利用类型下土壤冻融变化特征分析[D]. 吉林: 东北师范大学, 2014. |
[31] | [ Zhao Yaru. Soil Freezing and Thawing Variation Characteristics under Different Land Use Types in Mudan Ridge[D]. Jilin: Northeast Normal University, 2014. ] |
[32] | 李昀赟, 刘鸿雁. 中国东北多年冻土区植被生长对气候变化的响应[J]. 北京大学学报(自然科学版), 2021, 57(4): 783-789. |
[32] | [ Li Yunyun, Liu Hongyan. Responses of vegetation growth to climate change in permafrost distribution region in Northeast China[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2021, 57(4): 783-789. ] |
[33] | 马梓策, 于红博, 张巧凤, 等. 内蒙古地区1960—2016年气温和降水特征及突变[J]. 水土保持研究, 2019, 26(3): 114-121. |
[33] | [ Ma Zice, Yu Hongbo, Zhang Qiaofeng, et al. Characteristics and abrupt change of temperature and precipitation in Inner Mongolia area over the period 1960-2016[J]. Research of Soil and Water Conservation, 2019, 26(3): 114-121. ] |
[34] | Jin L Q, Zhang J Q, Wang R Y, et al. Analysis for spatio-temporal variation characteristics of droughts in different climatic regions of the Mongolian Plateau based on SPEI[J]. Sustainability, 2019, 11(20): 5767. |
[35] | 叶佳琦, 李政海, 乌云其其格, 等. 呼伦贝尔草原、湿地和森林植被对气候变化的响应[J]. 中国草地学报, 2018, 40(6): 26-32. |
[35] | [ Ye Jiaqi, Li Zhenghai, Wuyun Qiqige, et al. The response of steppe, wetland and forest vegetation to climate change in Hulun Buir[J]. Chinese Journal of Grassland, 2018, 40(6): 26-32. ] |
[36] | 王志春, 杨军, 陈素华, 等. 气候变暖对内蒙古东部地区农牧业气候资源的影响[J]. 干旱区资源与环境, 2016, 30(4): 132-137. |
[36] | [ Wang Zhichun, Yang Jun, Chen Suhua, et al. Impact of warmer climate on agricultural and animal husbandry climatic resources in eastern Inner Mongolia[J]. Journal of Arid Land Resources and Environment, 2016, 30(4): 132-137. ] |
/
〈 | 〉 |