植物生态

沙地盐胁迫对油莎豆幼苗生理生长影响的模拟研究

展开
  • 1.中国科学院新疆生态与地理研究所新疆荒漠植物根系生态与植被修复重点试验室,新疆 乌鲁木齐 830011;
    2.中国科学院新疆生态与地理研究所荒漠与绿洲生态国家重点试验室,新疆 乌鲁木齐 830011
    3.新疆策勒荒漠草地生态系统国家野外科学观测研究站,新疆 策勒 848300
    4.中国科学院大学,北京 100049
    5.新疆大学,新疆 乌鲁木齐 830046
马兴羽(1997-),男,硕士研究生,主要从事植物生态学研究. E-mail: mxy20200607@126.com

收稿日期: 2022-05-21

  修回日期: 2022-07-15

  网络出版日期: 2023-01-17

基金资助

国家重点研发计划项目(2019YFC0507603-01)

To simulate the growth and physiological responses of Cyperus esculentus seedlings to salt stress in sandy soil

Expand
  • 1. Xinjiang Desert Plant Roots Ecology and Vegetation Restoration Laboratory, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China
    2. State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography,Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China
    3. Cele National Station of Observation and Research for Desert Grassland Ecosystem in Xinjiang, Cele 848300, Xinjiang, China
    4. University of Chinese Academy of Sciences, Beijing 100049, China
    5. Xinjiang University, Urumqi 830046, Xinjiang, China

Received date: 2022-05-21

  Revised date: 2022-07-15

  Online published: 2023-01-17

摘要

为了解油莎豆(Cyperus esculentus)幼苗对沙化土地盐胁迫的生理生长适应性,本研究在温室条件下以风沙土为培养基质,采用盆栽试验对油莎豆幼苗进行不同浓度NaCl胁迫处理,分析盐胁迫30 d和50 d后油莎豆幼苗的生长、生理生化特性及Na+和K+平衡。结果表明:(1) 盐胁迫30 d和50 d后,油莎豆幼苗地上和地下部分均在NaCl浓度≤ 0.5 g·kg-1时生长良好,但株高明显降低;在NaCl浓度≥1.0 g·kg-1时,地上及地下部干重、株高和叶面积均出现不同程度下降。(2) 盐胁迫30 d时主要通过脯氨酸大量积累来减轻盐胁迫,在50 d时主要通过可溶性蛋白和可溶性糖的大量累积来提高其渗透调节能力以适应盐胁迫。(3) 随NaCl浓度的增加,叶片与根系Na+含量和Na+/K+均显著增加,说明其离子平衡遭到破坏。(4) 隶属度综合评价结果表明,NaCl浓度≤ 0.5 g·kg-1时油莎豆幼苗的综合生理生长表现没有发生明显变化,但超过1.0 g·kg-1时则显著下降,这表明油莎豆幼苗具有一定的耐盐性,在沙地轻度盐胁迫条件下可以正常生长。

本文引用格式

马兴羽,黄彩变,曾凡江,李向义,张玉林,丁雅,高艳菊,徐梦琪 . 沙地盐胁迫对油莎豆幼苗生理生长影响的模拟研究[J]. 干旱区研究, 2022 , 39(6) : 1862 -1874 . DOI: 10.13866/j.azr.2022.06.17

Abstract

To investigate the growth and physiological responses of Cyperus esculentus to salt stress in wind-sand soil, a pot experiment with eolian sandy soil as the growth medium was conducted to examine the effects of different degrees of salt stress (NaCl solution) on the growth, physiological and biochemical characteristics, and the balances of Na+ and K+ in root and leaves in a greenhouse on days 30 and 50 of stress exposure. The results showed that: (1) When the NaCl concentration was ≤0.5 g·kg-1, both the aboveground and underground dry weights of C. esculentus seedlings were significantly unaffected. However, plant height declined significantly compared with the non-stress seedlings. When NaCl the concentration was ≥1.0 g·kg-1, the dry weights of aboveground and underground, plant height, and leaf area decreased significantly with stress time. (2) On day 30, under salt stress, the proline content increased significantly with the NaCl concentration, but soluble and protein contents increased slightly. However, MDA content increased significantly under 0.5 g·kg-1 NaCl treatment and decreased significantly with increasing NaCl concentration. Under salt stress on day 50, as the NaCl concentration increased, the soluble protein content increased significantly. Then, soluble sugar content increased significantly firstly and then remained stable, while the contents of proline and MDA only increased significantly at 3.5 g·kg-1 NaCl. (3) The Na+ content and Na+/K+ in leaves and roots increased significantly as the NaCl concentration increased, while the K+ content decreased significantly and then remained stable when the NaCl concentration was >1.0 g·kg-1. These results suggest that increased proline content at the early growth stage, while increased contents of soluble protein and sugar at the late growth stage, contribute to increasing the osmotic adjustment and water-holding capacity and decreasing the MDA content and K+ loss, improving the salt tolerance of C. esculentus in sandy soil. The comprehensive evaluation results showed that when the NaCl concentration was ≤0.5 g·kg-1, no effect of salt stress on the growth of C. esculentus seedling was found, while the plant growth was inhibited significantly when the concentration was >1.0 g·kg-1.

参考文献

[1] 杨劲松, 姚荣江, 王相平, 等. 中国盐渍土研究: 历程、现状与展望[J]. 土壤学报, 2022, 59(1): 10-27.
[1] [ Yang Jinsong, Yao Rongjiang, Wang Xiangping, et al. Research on salt-affected soils in China: History, status quo and prospect[J]. Acta Prataculturae Sinica, 2022, 59(1): 10-27. ]
[2] 杨劲松, 姚荣江, 王相平, 等. 防止土壤盐渍化, 提高土壤生产力[J]. 科学, 2021, 73(6): 30-34, 2, 4.
[2] [ Yang Jinsong, Yao Rongjiang, Wang Xiangping, et al. Halt soil salinization, boost soil productivity[J]. Science, 2021, 73(6): 30-34, 2, 4. ]
[3] 胡明芳, 田长彦, 赵振勇, 等. 新疆盐碱地成因及改良措施研究进展[J]. 西北农林科技大学学报(自然科学版), 2012, 40(10): 111-117.
[3] [ Hu Mingfang, Tian Changyan, Zhao Zhenyong, et al. Salinization causes and research progress of technologies improving saline-alkali soil in Xinjiang[J]. Journal of Northwest A & F University(Natural Science Edition), 2012, 40(10): 111-117. ]
[4] 云雪雪, 陈雨生. 国际盐碱地开发动态及其对我国的启示[J]. 国土与自然资源研究, 2020(1): 84-87.
[4] [ Yun Xuexue, Chen Yusheng. International development of saline-alkali land and its enlightenment to China[J]. Territory & Natural Resources Study, 2020(1): 84-87. ]
[5] 阳振乐. 油莎豆的特性及其研究进展[J]. 北方园艺, 2017(17): 192-201.
[5] [ Yang Zhenle. Characteristics and research progress of Cyperus esculentus[J]. Northern Horticulture, 2017(17): 192-201. ]
[6] Pascual B, Maroto J V, López-Galarza S, et al. Chufa (Cyperus esculentus L. var. sativus Boeck.): An unconventional crop. Studies related to applications and cultivation[J]. Economic Botany, 2000, 54(4): 439-448.
[7] 杨敏, 田丽萍, 薛琳. 不同油莎豆品种在新疆干旱气候区的产量表现与品质差异[J]. 中国油料作物学报, 2013, 35(4): 451-454.
[7] [ Yang Min, Tian Liping, Xue Lin. Quality and production potential of different chufa varieties in arid climate region of Xinjiang[J]. Chinese Journal of Oil Crop Sciences, 2013, 35(4): 451-454. ]
[8] 刘亚兰, 赵月, 徐梦琦, 等. 极端干旱区种植行距对油莎豆生长及土壤特性的影响[J]. 草地学报, 2021, 29(11): 2486-2493.
[8] [ Liu Yalan, Zhao Yue, Xu Mengqi, et al. Effect of row spacing on the growth of Cyperus esculentus and soil properties in extremely arid region[J]. Acta Agrestia Sinica, 2021, 29(11): 2486-2493. ]
[9] 齐琪, 马书荣, 徐维东. 盐胁迫对植物生长的影响及耐盐生理机制研究进展[J]. 分子植物育种, 2020, 18(8): 2741-2746.
[9] [ Qi Qi, Ma Shurong, Xu Weidong. Advances in the effects of salt stress on plant growth and physiological mechanisms of salt tolerance[J]. Molecular Plant Breeding, 2020, 18(8): 2741-2746. ]
[10] Zelm E V, Zhang Y, Testerink C. Salt tolerance mechanisms of plants[J]. Annual Review of Plant Biology, 2020, 71: 403-433.
[11] 蔡晓锋, 胡体旭, 叶杰, 等. 植物盐胁迫抗性的分子机制研究进展[J]. 华中农业大学学报, 2015, 34(3): 134-141.
[11] [ Cai Xiaofeng, Hu Tixu, Ye Jie, et al. Molecular mechanisms of salinity tolerance in plants[J]. Journal of Huazhong Agricultural University, 2015, 34(3): 134-141. ]
[12] Deinlein U, Stephan A B, Horie T, et al. Plant salt-tolerance mechanisms[J]. Trends in Plant Science, 2014, 19(6): 371-379.
[13] 黄勇, 郭猛, 张红瑞, 等. 盐胁迫对石竹种子萌发和幼苗生长的影响[J]. 草业学报, 2020, 29(12): 105-111.
[13] [ Huang Yong, Guo Meng, Zhang Hongrui, et al. Effects of salt stress on seed germination and seedling growth of carnation[J]. Acta Prataculturae Sinica, 2020, 29(12): 105-111. ]
[14] 豆昕桐, 王英杰, 王华忠, 等. 耐盐和盐敏感型小麦品种对NaCl胁迫的生理响应及耐盐性差异[J]. 生态学报, 2021, 41(12): 4976-4992.
[14] [ Dou Xintong, Wang Yingjie, Wang Huazhong, et al. Physiological response and tolerance difference of two wheat varieties to NaCl stress[J]. Acta Ecologica Sinica, 2021, 41(12): 4976-4992. ]
[15] 杨发荣, 刘文瑜, 黄杰, 等. 不同藜麦品种对盐胁迫的生理响应及耐盐性评价[J]. 草业学报, 2017, 26(12): 77-88.
[15] [ Yang Farong, Liu Wenyu, Huang Jie. et al. Physiological responses of different quinoa varieties to salt stress and evaluation of salt tolerance[J]. Acta Prataculturae Sinica, 2017, 26(12): 77-88. ]
[16] 贾茵, 向元芬, 宋宜霖, 等. 小报春幼苗对NaCl胁迫及外源钙缓解的生理响应[J]. 中国草地学报, 2022, 44(1): 10-19.
[16] [ Jia Yin, Xiang Yuanfen, Song Yilin. et al. Physiological responses of Primula forbesii seedings to NaCl stress and alleviation effect of exogenous calcium[J]. Chinese Journal of Grassland, 2022, 44(1): 10-19. ]
[17] 唐榕, 梁培鑫, 郭晨荔, 等. 盐碱胁迫对油莎豆幼苗生长和生理性状的影响[J]. 浙江农业科学, 2022, 63(3): 528-533.
[17] [ Tang Rong, Liang Peixin, Guo Chenli, et al. Effect of saline-alkali stress on growth, physiological characteristics of Cyperus esculentus[J]. Journal of Zhejiang Agricultural Sciences, 2022, 63(3): 528-533. ]
[18] 买买提江·赛提尼牙孜, 曼吾拉·卡德尔. 新疆地区近30年气候变化特征分析及预测[J]. 南方农机, 2020, 51(17):90-91.
[18] [ Saitiniyazi M, Kadeer M. Analysis and prediction of climate change characteristics in Xinjiang in recent 30 years[J]. China Southern Agricultural Machinery, 2020, 51(17):90-91. ]
[19] 黄绍文, 高伟, 唐继伟, 等. 我国主要菜区耕层土壤盐分总量及离子组成[J]. 植物营养与肥料学报, 2016, 22(4): 965-977.
[19] [ Huang Shaowen, Gao Wei, Tang Jiwei, et al. Total salt content and ion composition in tillage layer of soils in the main vegetable production regions of China[J]. Journal of Plant Nutrition and Fertilizers, 2016, 22(4): 965-977. ]
[20] 弋良朋, 王祖伟. 盐胁迫下3种滨海盐生植物的根系生长和分布[J]. 生态学报, 2011, 31(5): 1195-1202.
[20] [ Yi Liangpeng, Wang Zuwei. Root system characters in growth and distribution among three littoral halophytes[J]. Acta Ecologica Sinica, 2011, 31(5): 1195-1202. ]
[21] 邹琦. 植物生理学实验指导[M]. 北京: 中国农业出版社, 2000: 11-12.
[21] [ Zou Qi. Instructional on Plant Physiology[M]. Beijing: China Agriculture Press, 2000: 11-12. ]
[22] Kosugi H, Kikugawa K. Thiobarbituric acid reaction of aldehydes and oxidized lipids in glacial acetic acid[J]. Lipids, 1985, 20(12): 915-921.
[23] 李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000: 195-197, 258-260.
[23] [ Li Hesheng. Experimental Principle and Techniques of Plant Physiology and Biochemistry[M]. Beijing: Higher Education Press, 2000: 195-197, 258-260. ]
[24] 李玲. 植物生理学模块实验指导[M]. 北京: 科学出版社, 2009: 54-55.
[24] [ Li Ling. Experimental Guidance of Plant Physiology Module[M]. Beijing: Science Press, 2009: 54-55. ]
[25] 王宝山, 赵可夫. 小麦叶片中Na, K提取方法的比较[J]. 植物生理学通讯, 1995, 31(1): 50-52.
[25] [ Wang Baoshan, Zhao Kefu. Comparison of extractive methods of Na and K in wheat leaves[J]. Plant physiology Communications, 1995, 31(1): 50-52. ]
[26] Liu B, Kang C, Wang X, et al. Physiological and morphological responses of Leymus chinensis to saline-alkali stress[J]. Grassland science, 2015, 61(4): 217-226.
[27] 陆安桥, 张峰举, 许兴, 等. 盐胁迫对湖南稷子苗期生长及生理特性的影响[J]. 草业学报, 2021, 30(5): 84-93.
[27] [ Lu Anqiao, Zhang Fengju, Xu Xing, et al. Effects of salt stress on growth and physiological characteristics of Echinochloa frumentacea seedlings[J]. Acta Prataculturae Sinica, 2021, 30(5): 84-93. ]
[28] 徐静, 董宽虎, 高文俊, 等. NaCl和Na2SO4胁迫下冰草幼苗的生长及生理响应[J]. 中国草地学报, 2011, 33(1): 36-41.
[28] [ Xu Jing, Dong Kuanhu, Gao Wenjun, et al. Growth and physiological responses of Agropyron cristatum seedlings under NaCl and Na2SO4 stress[J]. Chinese Journal of Grassland, 2011, 33(1): 36-41. ]
[29] 毛爽, 周万里, 杨帆, 等. 植物根系应答盐碱胁迫机理研究进展[J]. 浙江农业学报, 2021, 33(10): 1991-2000.
[29] [ Mao Shuang, Zhou Wanli, Yang Fan, et al. Research progress on mechanism of plant roots response to salt-alkali stress[J]. Bulletin of Soil and Water Conservation, 2021, 30(10): 1991-2000. ]
[30] 雷春英, 吉小敏, 彭钼植, 等. 不同类型盐分对盐爪爪种子萌发和幼苗生长的影响[J]. 干旱区研究, 2021, 38(5): 1436-1441.
[30] [ Lei Chunying, Ji Xiaomin, Peng Muzhi, et al. Effect of sodium salinity stress type on the germination of Kalidium foliatum seeds and its young seedling growth[J]. Arid Zone Research, 2021, 38(5): 1436-1441. ]
[31] Mauchamp A, Mésleard F. Salt tolerance in Phragmites australis populations from coastal Mediterranean marshes[J]. Aquatic Botany, 2001, 70(1): 39-52.
[32] Salter J, Morris K, Bailey P C E, et al. Interactive effects of salinity and water depth on the growth of Melaleuca ericifolia Sm. (Swamp paperbark) seedlings[J]. Aquatic Botany, 2007, 86(3): 213-222.
[33] 王树凤, 胡韵雪, 孙海菁, 等. 盐胁迫对2种栎树苗期生长和根系生长发育的影响[J]. 生态学报, 2014, 34(4): 1021-1029.
[33] [ Wang Shufeng, Hu Yunxue, Sun Haiqing, et al. Effects of salt stress on growth and root development of two oak seedlings[J]. Acta Ecologica Sinica, 2014, 34(4): 1021-1029. ]
[34] 孟繁昊, 王聪, 徐寿军. 盐胁迫对植物的影响及植物耐盐机理研究进展[J]. 内蒙古民族大学学报(自然科学版), 2014, 29(3): 315-318, 373.
[34] [ Meng Fanhao, Wang Cong, Xu Shoujun. Advances in research on effects of salt stress on plant and the mechanism of plant salt tolerance[J]. Journal of Inner Mongolia University for Nationalities (Natural Science Edition), 2014, 29(3): 315-318, 373. ]
[35] Mi?i? D, ?iler B, Nestorovi? ?ivkovi? J, et al. Contribution of inorganic cations and organic compounds to osmotic adjustment in root cultures of two Centaurium species differing in tolerance to salt stress[J]. Plant Cell, Tissue and Organ Culture (PCTOC), 2012, 108(3): 389-400.
[36] Arndt S K, Arampatsis C, Foetzki A, et al. Contrasting patterns of leaf solute accumulation and salt adaptation in four phreatophytic desert plants in a hyperarid desert with saline groundwater[J]. Journal of Arid Environments, 2004, 59(2): 259-270.
[37] 张娅, 施树倩, 李亚萍, 等. 不同盐胁迫下小麦叶片渗透性调节和叶绿素荧光特性[J]. 应用生态学报, 2021, 32(12): 4381-4390.
[37] [ Zhang Ya, Shi Shuqian, Li Yaping, et al. Osmotic regulation and chlorophyll fluorescence characteristics in leaves of wheat seedlings under different salt stresses[J]. Chinese Journal of Applied Ecology, 2021, 32(12): 4381-4390. ]
[38] Xu Y, Xiao H Y, Zheng N J, et al. Progress on responding of free amino acid in plants to salt stress[J]. Environmental Science & Technology, 2016, 39: 40-47.
[39] 高茜, 李毅, 苏世平, 等. 盐胁迫对红砂(Reaumuria soongorica)种子吸胀过程中生理特性的影响[J]. 中国沙漠, 2014, 34(1): 83-87.
[39] [ Gao Qian, Li Yi, Su Shiping, et al. Effects of salt stress on physiological characteristics of Reaumuria soongorica seeds during Imbibition[J]. Journal of Desert Research, 2014, 34(1): 83-87. ]
[40] 李茹玉, 柴薇薇, 郭晓农, 等. 盐处理对罗布麻(Apocynum venetum)幼苗渗透调节的影响[J]. 分子植物育种, 2020, 18(12): 4105-4110.
[40] [ Li Ruyu, Chai Weiwei, Guo Xiaonong, et al. Effect of salt treatment on osmotic adjustment of Apocynum venetum seedlings[J]. Molecular Plant Breeding, 2020, 18(12): 4105-4110. ]
[41] 王娟, 李德全. 逆境条件下植物体内渗透调节物质的积累与活性氧代谢[J]. 植物学通报, 2001(4): 459-465.
[41] [ Wang Juan, Li Dequan. The accumulation of plant osmoticum and activated oxygen metabolism under stress[J]. Chinese Bulletin of Botany, 2001(4): 459-465. ]
[42] Rehman S, Harris P J C, Bourne W F. The effect of sodium chloride on the Ca2+, K+ and Na+ concentrations of the seed coat and embryo of Acacia tortilis and A. coriacea[J]. Annals of Applied Biology, 1998, 133(2): 269-279.
[43] 王新英, 史军辉, 刘茂秀, 等. 四翅滨藜主要渗透调节物质对NaCl胁迫累积的响应[J]. 干旱区研究, 2012, 29(4): 621-627.
[43] [ Wang Xinying, Shi Junhui, Liu Maoxiu. et al. Response of main osmotic adjustment substances to NaCl stress accumulation in Atriplex canescens[J]. Arid Zone Research, 2012, 29(4): 621-627. ]
[44] Flowers T J, Munns R, Colmer T D. Sodium chloride toxicity and the cellular basis of salt tolerance in halophytes[J]. Annals of botany, 2015, 115(3): 419-431.
[45] 赵映雪. NaCl胁迫对沙葱幼苗根和叶片生理生化基础的影响[D]. 呼和浩特: 内蒙古农业大学, 2019.
[45] [ Zhao Yingxue. Effects of NaCl Stress on Physiological and Biochemical Basis of Root and Leaf of Allium mongolicum Regel Seedings[D]. Hohhot: Inner Mongolia Agricultural University, 2019. ]
[46] 姜瑛, 周萌, 吴越, 等. 不同燕麦品种耐盐性差异及其生理机制[J]. 草业科学, 2018, 35(12): 2903-2914.
[46] [ Jiang Ying, Zhou Meng, Wu Yue. et al. Evaluation of salt tolerance and its underlying physiological mechanisms in different oats[J]. Pratacultural Science, 2018, 35(12): 2903-2914. ]
[47] 郭瑞, 李峰, 周际, 等. 亚麻响应盐、碱胁迫的生理特征[J]. 植物生态学报, 2016, 40(1): 69-79.
[47] [ Guo Rui, Li Feng, Zhou Ji, et al. Eco-physiological responses of linseed (Linum usitatissimum) to salt and alkali stresses[J]. Chinese Journal of Plant Ecology, 2016, 40(1): 69-79. ]
[48] 刘玲, 罗剑洪, 李丙文, 等. 咸水滴灌对肉苁蓉寄生体系盐离子分配及品质的影响[J]. 干旱区研究, 2022, 39(3): 908-915.
[48] [ Liu Ling, Luo Jianhong, Li Bingwen, et al. Effect of saline water drip irrigation on salt ions distribution for the Haloxylon ammoedndron-Cistanche deserticola association (H-C association) and quality of Cistanche deserticola Ma[J]. Arid Zone Research, 2022, 39(3): 908-915. ]
[49] Maathuis F J M, Amtmann A. K+ nutrition and Na+ toxicity: the basis of cellular K+/Na+ ratios[J]. Annals of Botany, 1999, 84(2): 123-133.
[50] 田小霞, 卫晓锋, 魏浩, 等. 6种牧草苗期耐旱性综合评价[J]. 干旱区研究, 2022, 39(3): 978-985.
[50] [ Tian Xiaoxia, Wei Xiaofeng, Wei Hao, et al. Comprehensive evaluation of drought tolerance of six forage species at the seedling stage[J]. Arid Zone Research, 2022, 39(3): 978-985. ]
[51] 王子臣, 张兵, 管永祥, 等. 油莎豆盐土栽培生理初探[J]. 土壤, 2017, 49(6): 1126-1131.
[51] [ Wang Zichen, Zhang Bing, Guan Yongxiang, et al. Study on physiology of chufa cultivation in solonchak[J]. Soils, 2017, 49(6): 1126-1131. ]
[52] 徐接亮, 张凤华, 李变变, 等. 施肥对油莎豆根际微生物群落特性的影响[J]. 干旱区研究, 2021, 38(6): 1741-1749.
[52] [ Xu Jieliang, Zhang Fenghua, Li Bianbian, et al. Effect of fertilization on the characteristics of soil microbial community in the rhizosphere of Cyperus esculentus in the sandy area of Xinjiang[J]. Arid Zone Research, 2021, 38(6): 1741-1749. ]
[53] 王艺臻, 丁国栋, 崔欣然, 等. 盐碱复合胁迫对油沙豆生长和光合特性的影响[J]. 干旱区资源与环境, 2022, 36(5): 146-152.
[53] [ Wang Yizhen, Ding Guodong, Cui Xinran, et al. Effects of saline-alkali stress on the growth and photosynthetic characteristics of Cyperus esculentus and the responses of protective enzymes[J]. Journal of Arid Land Resources and Environment, 2022, 36(5): 146-152. ]
[54] 张小燕. 油莎豆的主要高产栽培技术[J]. 农业科技通讯, 2009, 38(6): 165-166.
[54] [ Zhang Xiaoyan. Main high-yield cultivation techniques of Cyperus esculentus[J]. Bulletin of Agricultural Science and Technology, 2009, 38(6): 165-166. ]
文章导航

/