内蒙古河套地区一次对流暴雨的中尺度对流系统演变特征
收稿日期: 2022-04-16
修回日期: 2022-07-07
网络出版日期: 2023-01-17
基金资助
内蒙古自治区自然科学基金(2019BS04001);内蒙古自治区自然科学基金(2021MS04019);内蒙古大学高层次人才科研启动项目(10000-22311201/017);内蒙古大学高层次人才科研启动项目资助(42030604)
Various characteristics of the mesoscale convection system of a convective rainstorm in the Hetao area of Inner Mongolia
Received date: 2022-04-16
Revised date: 2022-07-07
Online published: 2023-01-17
利用常规观测资料、FY4A卫星、多普勒天气雷达及再分析等资料,对2018年7月19日内蒙古河套地区大暴雨过程的环流背景、环境场条件和中尺度对流系统(MCS)的演变特征进行了分析。结果表明:(1) 副热带高压稳定少动、500 hPa高空槽、低层切变线及西南急流、300 hPa高空急流和地面低压的配合为本次对流暴雨过程提供了有利的环流背景。(2) 低层持久的西南急流提供充足水汽输送,假相当位温高能舌、深厚暖云层、较高强度的对流有效位能、高空槽后冷平流入侵和上干下湿的不稳定气层为强对流暴雨的产生提供了较好的环境条件。(3) 东西向和南北向先后生成的MCS共同导致大暴雨过程的发生,对流暴雨主要是由于东西向MCS沿阴山山脉缓慢移动产生,20 mm·h-1的强降水出现在上风向云团边缘及云顶亮温(TBB)梯度大值区附近。(4) 东西向带状回波移动速度缓慢且移动方向与回波长轴方向基本平行,强回波自西向东缓慢移动形成显著的“列车效应”,造成了5 h以上的连续性强降水,南北向带状回波持续时间更长,但移动方向与回波长轴方向垂直,且移动速度较快,所以产生的暴雨强度较东西向弱。(5) 地面中尺度辐合线是触发中尺度对流系统的主要原因,河套地区的复杂地形及低空急流的脉动进一步促进了对流触发,地面中尺度辐合线与阴山山脉呈现几乎重叠的分布,有利于降水的持续,促使本次对流暴雨过程的发生。
黄晓璐,李瑞青,李林惠,林弘杰,姚乐宝 . 内蒙古河套地区一次对流暴雨的中尺度对流系统演变特征[J]. 干旱区研究, 2022 , 39(6) : 1728 -1738 . DOI: 10.13866/j.azr.2022.06.04
Based on conventional observation data, FY4A satellite cloud pictures, Doppler radar data, and reanalysis data, the occurrence and various characteristics of the mesoscale convective system (MCS) of the heavy rain process in the Hetao area of Inner Mongolia on July 19, 2018, were analyzed. The results show that: (1) The stable and less moving subtropical high, the 500hPa upper trough, the low-level shear line, the low-level southwest jet, the 300 hPa upper-altitude jet, and the surface low pressure provide a favorable circulation background. (2) The stable low-level southwest jet provides enough water vapor transport. Pseudo-equivalent potential temperature high energy tongue, deep warm cloud layer, high-intensity CAPE, cold advection intrusion behind the upper trough, and the unstable air layer together provide better environmental conditions for the heavy rainstorm. (3) The two successively developed MCS caused the heavy rain process. The convective rainstorm is mainly caused by the slow movement of the east-west MCS along the Yinshan Mountains, 20 mm·h-1 heavy rain appears at the edge of upwind cloud clusters and the strong TBB gradient areas. (4) The east-west echo moves slowly along the direction of the echo wavelength axis. The strong echo moves slowly from west to east to form a significant “train effect,” causing continuous heavy rain for more than five hours. The north-south direction echo lasts longer, but its moving direction is vertical to the direction of the echo wavelength axis, and the moving speed is faster, so the intensity of the rainstorm produced is weaker than the east-west direction. (5) The surface convergence line is the main factor that triggered the MCS occurrence and development, Hetao area complex terrain, and the pulsation of the low-level jet both promote the effect. The almost overlapping distribution of the surface mesoscale convergence line and the Yinshan Mountains are favorable to the continuation of rain and the convective rainstorm.
Key words: convective rainstorm; MCS; train effect; Hetao area; Inner Mongolia
[1] | 宋桂英, 李孝泽, 孙永刚, 等. 内蒙古干旱-半干旱带2012年“7·20”极端暴雨事件的特征及成因[J]. 冰川冻土, 2013, 35(4): 883-889. |
[1] | [ Song Guiying, Li Xiaoze, Sun Yonggang, et al. Characteristics and causes of the extreme rainstorm July 20 2012 in the arid and semiarid zone in Inner Mongolia[J]. Journal of Glaciology and Geocryology, 2013, 35(4): 883-889. ] |
[2] | 张桂莲, 杭月荷, 付丽娟, 等. “列车效应”诱发的一次河套地区致灾暴雨成因[J]. 高原气象, 2020, 39(4): 788-795. |
[2] | [ Zhang Guilian, Hang Yuehe, Fu Lijuan, et al. Causes of a torrential rainstorm induced by “train effect” in Hetao area[J]. Plateau Meteorology, 2020, 39(4): 788-795. ] |
[3] | 马爱华, 岳大鹏, 赵景波, 等. 近60 a来内蒙古极端降水时空变化及其影响[J]. 干旱区研究, 2020, 37(1): 74-85. |
[3] | [ Ma Aihua, Yue Dapeng, Zhao Jingbo, et al. Spatiotemporal variation and effect of extreme precipitation in Inner Mongolia in recent 60 years[J]. Arid Zone Research, 2020, 37(1): 74-85. ] |
[4] | 王澄海, 杨金涛, 杨凯, 等. 过去近60 a黄河流域降水时空变化特征及未来30 a变化趋势[J]. 干旱区研究, 2022, 39(3): 708-722. |
[4] | [ Wang Chenghai, Yang Jintao, Yang Kai, et al. Changing precipitation characteristics in the yellow river basin in the last 60 years and tendency prediction for next 30 years[J]. Arid Zone Research, 2022, 39(3): 708-722. ] |
[5] | 丁一汇. 陶诗言先生在中国暴雨发生条件和机制研究中的贡献[J]. 大气科学, 2014, 38(4): 616-626. |
[5] | [ Ding Yihui. Contributions of Prof Tao Shiyan to the study of formation conditions and mechanisms of heavy rainfalls in China[J]. Chinese Journal of Atmospheric Sciences, 2014, 38(4): 616-626. ] |
[6] | 何光碧, 曾波, 郁淑华, 等. 青藏高原周边地区持续性暴雨特征分析[J]. 高原气象, 2016, 35(4): 865-874. |
[6] | [ He Guangbi, Zeng Bo, Yu Shuhua, et al. Analysis of durative rainstorm characteristics occurred in the ambient area of Qinghai-Xizang Plateau[J]. Plateau Meteorology, 2016, 35(4): 865-874. ] |
[7] | 李晓霞, 尚大成, 谌芸, 等. 甘肃陇南两次不同强度暴雨天气的中尺度特征分析[J]. 高原气象, 2013, 32(5): 1389-1399. |
[7] | [ Li Xiaoxia, Shang Dacheng, Chen Yun, et al. Mesoscale analysis on two different intensity rainstorm processes in the east of Gansu Province[J]. Plateau Meteorology, 2013, 32(5): 1389-1399. ] |
[8] | 刘新伟, 叶培龙, 伏晶, 等. 高原切边线形态演变对高原边坡一次降水过程的影响分析[J]. 高原气象, 2020, 39(2): 245-253. |
[8] | [ Liu Xinwei, Ye Peilong, Fu Jing, et al. The influence of the morphological evolution of plateau shear line on a precipitation weather process over plateau slope[J]. Plateau Meteorology, 2020, 39(2): 245-253. ] |
[9] | 王劲松, 李耀辉, 康风琴, 等. 西北区东部一次暴雨的数值模拟试验[J]. 高原气象, 2002, 21(3): 258-266. |
[9] | [ Wang Jingsong, Li Yaohui, Kang Fengqin, et al. Characteristic quantity analyses of boundary layer from mesoscale model[J]. Plateau Meteorology, 2002, 21(3): 258-266. ] |
[10] | 杨晓军, 叶培龙, 徐丽丽, 等. 一次青藏高原东北侧边坡强对流暴雨的中尺度对流系统演变特征[J]. 高原气象, 2022, 41(4): 839-849. |
[10] | [ Yang Xiaojun, Ye Peilong, Xu Lili, et al. The variation characteristics of mesoscale convection system in a severe convective torrential rain over the northeast slope of the Qinghai-Xizang Plateau[J]. Plateau Meteorology, 2022, 41(4): 839-849. ] |
[11] | 井喜, 李强, 屠妮妮, 等. 黄土高原一次β中尺度突发性暴雨特征及成因[J]. 暴雨灾害, 2013, 32(3): 242-248. |
[11] | [ Jing Xi, Li Qiang, Tu Nini, et al. Analysis on characteristics and causation of a meso β scale paroxysmal rainstorm on Loess Plateau[J]. Torrential Rain and Disasters, 2013, 32(3): 242-248. ] |
[12] | 曾勇, 杨莲梅. 南疆西部一次暴雨强对流过程的中尺度特征分析[J]. 干旱气象, 2017, 35(3): 475-484. |
[12] | [ Zeng Yong, Yang Lianmei. Mesoscale characteristic analysis of a severe convective weather with torrential rain in the west of southern Xinjiang[J]. Journal of Arid Meteorology, 2017, 35(3): 475-484. ] |
[13] | 王宝鉴, 孔祥伟, 傅朝, 等. 甘肃陇东南一次大暴雨的中尺度特征分析[J]. 高原气象, 2016, 35(6): 1551-1564. |
[13] | [ Wang Baojian, Kong Xiangwei, Fu Chao, et al. Analysis on mesoscale characteristics of a rainstorm process in southeastern Gansu[J]. Plateau Meteorology, 2016, 35(6): 1551-1564. ] |
[14] | 付双喜, 张鸿发, 楚荣忠. 河西走廊中部一次强降水过程的多普勒雷达资料分析[J]. 干旱区研究, 2009, 26(5): 656-663. |
[14] | [ Fu Shuangxi, Zhang Hongfa, Chu Rongzhong. Analyzing on a heavy precipitation with doppler radar data in the middle of Hexi Corridor[J]. Arid Zone Research, 2009, 26(5): 656-663. ] |
[15] | 慕建利, 李泽椿, 谌芸, 等. 一次陕西关中强暴雨中尺度系统特征分析[J]. 高原气象, 2014, 33(1): 148-161. |
[15] | [ Mu Jianli, Li Zechun, Chen Yun, et al. Feature analyses of mesoscale convective system of a heavy rainfall in the central Shaanxi plain[J]. Plateau Meteorology, 2014, 33(1): 148-161. ] |
[16] | 俞小鼎. 2012年7月21日北京特大暴雨成因分析[J]. 气象, 2012, 38(11):1313-1329. |
[16] | [ Yu Xiaoding. Investigation of Beijing extreme flooding event on 21 July 2012[J]. Meteorological Monthly, 2012, 38(11):1313-1329.] |
[17] | 孙继松, 何娜, 王国荣, 等. “7·21”北京大暴雨系统的结构演变特征及成因初探[J]. 暴雨灾害, 2012, 31(3):218-225. |
[17] | [ Sun Jisong, He Na, Wang Guorong. et al. Preliminary analysis on synoptic configuration evolvement and mechanism of a torrential rain occurring in Beijing on 21 July 2012[J]. Torrential Rain and Disasters, 2012, 31(3):218-225. ] |
[18] | 赵庆云, 张武, 陈晓燕, 等. 一次六盘山两侧强对流暴雨中尺度对流系统的传播特征[J]. 高原气象, 2018, 37(3): 767-776. |
[18] | [ Zhao Qingyun, Zhang Wu, Chen Xiaoyan, et al. Propagation characteristics of mesoscale convection system in an event of severe convection rainstorm over both sides of Liupanshan Mountains[J]. Plateau Meteorology, 2018, 37(3): 767-776. ] |
[19] | 贺晓露, 汪小康, 郝元甲, 等. 复杂地形影响下鄂东北梅雨锋大暴雨MCS的触发和演变[J]. 暴雨灾害, 2020, 39(6): 611-619. |
[19] | [ He Xiaolu, Wang Xiaokang, Hao Yuanjia, et al. Initiation and evolution of MCS of Meiyu frontal heavy rain event in the complex terrain of Northeast Hubei[J]. Torrential Rain and Disasters, 2020, 39(6): 611-619. ] |
[20] | 廖移山, 冯新, 石燕, 等. 2008年“7·22”襄樊特大暴雨的天气学机理分析及地形的影响[J]. 气象学报, 2011, 69(6): 945-955. |
[20] | [ Liao Yishan, Feng Xin, Shi Yan, et al. Analysis of the mechanism for “2008·7·22” excessive rain event in Xiangfan with a focus on the terrain effect[J]. Acta Meteorologica Sinica, 2011, 69(6): 945-955. ] |
[21] | 张家国, 周金莲, 谌伟, 等. 大别山西侧极端降水中尺度对流系统结构与传播特征[J]. 气象学报, 2015, 41(2): 291-304. |
[21] | [ Zhang Jiaguo, Zhou Jinlian, Chen Wei, et al. The structure and propagation characteristics of the extreme rain producing MCS on the westside of Dabie Mountain[J]. Acta Meteorologica Sinica, 2015, 41(2): 291-304. ] |
[22] | 付双喜, 张洪芬, 杨丽杰, 等. 地形影响下祁连山北麓不同类型降水特征对比分析[J]. 干旱区研究, 2021, 38(5): 1226-1234. |
[22] | [ Fu Shuangxi, Zhang Hongfen, Yang Lijie, et al. Comparative analysis of different types of precipitation characteristics in the northern foot of Qilian Mountain under the influence of topography[J]. Arid Zone Research, 2021, 38(5): 1226-1234. ] |
[23] | 韩经纬, 吴学宏, 宋桂英, 等. 2006年春季内蒙古久旱转雨过程分析[J]. 气象科学, 2009, 29(2): 235-240. |
[23] | [ Han Jingwei, Wu Xuehong, Song Guiying, et al. Characteristic ananlysis of prolonged drought turning to rain in Inner Monglia in spring 2006[J]. Scientia Meteorologica Sinica, 2009, 29(2): 235-240. ] |
[24] | 李春筱, 董治宝, 徐永旺, 等. 内蒙古额济纳旗一次局地大到暴雨的成因分析[J]. 中国沙漠, 2011, 31(3): 774-779. |
[24] | [ Li Chunxiao, Dong Zhibao, Xu Yongwang, et al. Cause of a local heavy hard rain in Ejina Banner, Inner Mongolia[J]. Journal of Desert Research, 2011, 31(3): 774-779. ] |
[25] | 孟雪峰, 孙永刚, 萨日娜, 等. 河套气旋发展东移与北京暴雨的关系[J]. 气象, 2013, 39(12): 1542-1549. |
[25] | [ Meng Xuefeng, Sun Yonggang, Sa Rina, et al. Correlation between eastward developing of Hetao cyclone and the severe rainstorm in Beijing on 21 July 2012[J]. Meteorological Monthly, 2013, 39(12): 1542-1549. ] |
[26] | Doswell C A. The distinction between large-scale and meso-scale contribution to severe convection: a case study example[J]. Weather Forecast, 1987, 2(1): 3-16. |
/
〈 | 〉 |