天气与应用气候

祁连山一次降水过程云模式模拟参数的选择及微物理结构特征分析

展开
  • 1.郑州大学计算机与人工智能学院/地球科学与技术学院,河南 郑州 450001
    2.中国科学院大气物理研究所云降水物理与强风暴实验室(LACS),北京 100029
张文煜(1964-),男,教授,主要从事大气探测与大气物理方面的研究. E-mail: zhangwy@zzu.edu.cn

收稿日期: 2022-04-30

  修回日期: 2022-06-17

  网络出版日期: 2023-01-17

基金资助

第二次青藏高原综合科学考察研究项目(2019QZKK0104);西北区域人工影响天气能力建设项目研究试验项目(ZQC-R18208)

Selection of cloud model simulation parameters and analysis of microphysical structure characteristics of the precipitation process in the Qilian Mountains

Expand
  • 1. College of Computer and Artificial Intelligence/School of Geoscience and Technology, Zhengzhou University, Zhengzhou 450001, Henan, China
    2. Key Laboratory for Clouds and Precipitation Physics and Severe Storms, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029

Received date: 2022-04-30

  Revised date: 2022-06-17

  Online published: 2023-01-17

摘要

使用实测数据结合云模式,对祁连山一次典型层积云系降水过程进行数值模拟研究,探讨参数选择对模拟结果的影响,并对其微物理结构特征进行分析。结果表明:祁连山云模式的最优参数是Thompson方案;各种水成物含量分布基本呈单峰型,01:00 4.5 km附近的霰混合比和雪混合比的值分别可达0.1 g·kg-1和0.7 g·kg-1,此高度层上有较为丰沛的过冷水。从5种水成物的空间分布及时间相关性来看,霰和雪的融化对雨水的形成有主要贡献;垂直方向上云系呈现“催化-供给”的分层结构,8 km高度以上的最高层为冰晶和雪的共存区,0 ℃层高度(4.5 km)以上的过冷区,同时存在霰粒子,云水和雨水。此云结构有利于降水的形成,有利于进行祁连山人工增雨作业。

本文引用格式

张文煜,任婧,付丹红,孔令彬,田硕 . 祁连山一次降水过程云模式模拟参数的选择及微物理结构特征分析[J]. 干旱区研究, 2022 , 39(6) : 1717 -1727 . DOI: 10.13866/j.azr.2022.06.03

Abstract

Using the measured data and cloud model, the precipitation process of a typical stratocumulus system in the Qilian Mountain is numerically simulated. The influence of parameter selection on the simulation results is discussed, and its microphysical structure characteristics are analyzed. The results show that the optimal parameter of the Qilian Mountain cloud model is the Thompson scheme. The content distribution of various aquatic products shows a single peak. The values of graupel and snow mixing ratios near 01:00 and 4.5 km can reach 0.1 g·kg-1 and 0.7 g·kg-1, respectively. There is abundant supercooled water in this height layer. From the spatial distribution and temporal correlation of the five aquatic products, the melting of graupel and snow has a significant contribution to rainwater formation. In the vertical direction, the cloud system presents a layered structure of “catalysis supply”: The highest layer above 8 km is the coexistence area of ice crystals and snow, and the supercooling area above the zero-layer (4.5 km), with graupel particles, cloud water, and rainwater at the same time. This cloud structure is conducive to forming precipitation and artificial precipitation enhancement in the Qilian Mountain.

参考文献

[1] 王芬, 曹杰, 李腹广, 等. 贵州不同等级降水日数气候特征及其与降水量的关系[J]. 高原气象, 2015, 34(1): 145-154.
[1] [ Wang Fen, Cao Jie, Li Fuguang, et al. Climate characteristics of rain days and the relationship between rain days and total amount of precipitation in Guizhou[J]. Plateau Meteorology, 2015, 34(1): 145-154. ]
[2] 徐东坡, 李金明, 周祖昊, 等. 1956—2018年中国降水特征的时空分布规律研究[J]. 水利水电技术, 2020, 51(10): 20-27.
[2] [ Xu Dongpo, Li Jinming, Zhou Zuhao, et al. Study on the spatial and temporal distribution law of precipitation characteristics in China from 1956 to 2018[J]. Water Resources and Hydropower Engineering, 2020, 51(10): 20-27. ]
[3] 尹宪志, 王毅荣, 徐文君, 等. 祁连山空中云水资源开发潜力研究新进展[J]. 沙漠与绿洲气象, 2020, 14(6): 134-140.
[3] [ Yin Xianzhi, Wang Yirong, Xu Wenjun, et al. Recent progress in research on potential for the development of cloud water resources over Qilian Mountains Area[J]. Desert and Oasis Meteorology, 2020, 14(6): 134-140. ]
[4] 刘卫国, 陶玥, 周毓荃, 等. 基于飞机真实轨迹的一次层状云催化的增雨效果及其作用机制的模拟研究[J]. 气象学报, 2021, 79(2): 340-358.
[4] [ Liu Weiguo, Tao Yue, Zhou Yuquan, et al. Simulation of stratiform cloud seeding, its rainfall enhancement effect and mechanism study based on a real trajectory of aircraft[J]. Acta Meteorologica Sinica, 2021, 79(2): 340-358. ]
[5] 唐林, 李琼, 黎祖贤, 等. 一次积层混合云云系微物理结构数值模拟与增雨条件分析[J]. 干旱气象, 2020, 38(1): 100-108.
[5] [ Tang Lin, Li Qiong, Li Zuxian, et al. Numerical simulation of mircophysical structure of a mixed convective stratiform cloud system and analysis of seeding conditions[J]. Journal of Arid Meteorology, 2020, 38(1): 100-108. ]
[6] 何晖, 高茜, 刘香娥, 等. 积层混合云结构特征及降水机理的个例模拟研究[J]. 大气科学, 2015, 39(2): 315-328.
[6] [ He Hui, Gao Qian, Liu Xiang’e, et al. Numerical simulation of the structural characteristics and precipitation mechanism of stratiform clouds with embedded convections[J]. Chinese Journal of Atmospheric Sciences, 2015, 39(2): 315-328. ]
[7] 程鹏, 罗汉, 刘琴, 等. 基于地基GPS的祁连山大气可降水量特征[J]. 气象, 2021, 47(9): 1135-1145.
[7] [ Cheng Peng, Luo Han, Liu Qin, et al. Characteristics of precipitable water vapor in Qilian Mountains based on ground-based GPS data[J]. Meteorological Monthly, 2021, 47(9): 1135-1145. ]
[8] 付双喜, 张洪芬, 杨丽杰, 等. 地形影响下祁连山北麓不同类型降水特征对比分析[J]. 干旱区研究, 2021, 38(5): 1226-1234.
[8] [ Fu Shuangxi, Zhang Hongfen, Yang Lijie, et al. Comparative analysis of different types of precipitation characteristics in the northern foot of Qilian Mountain under the influence of topography[J]. Arid Zone Research, 2021, 38(5): 1226-1234. ]
[9] 党娟, 刘卫国, 陶玥, 等. 一次降水性层积云系的微物理特征分析[J]. 高原气象, 2016, 35(6): 1639-1649.
[9] [ Dang Juan, Liu Weiguo, Tao Yue, et al. Analysis of cloud microphysical characteristics on a precipitation stratocumulus[J]. Plateau Meteorology, 2016, 35(6): 1639-1649. ]
[10] 李德俊, 唐仁茂, 江鸿, 等. 武汉一次对流云火箭人工增雨作业的综合观测分析[J]. 干旱气象, 2016, 34(2): 362-369.
[10] [ Li Dejun, Tang Renmao, Jiang Hong, et al. Analysis on comprehensive observation of an artificial precipitation enhancement operation for convective clouds in wuhan[J]. Journal of Arid Meteorology, 2016, 34(2): 362-369. ]
[11] 亓鹏, 郭学良, 卢广献, 等. 华北太行山东麓一次稳定性积层混合云飞机观测研究:对流云/对流泡和融化层结构特征[J]. 大气科学, 2019, 43(6): 1365-1384.
[11] [ Qi Peng, Guo Xueliang, Lu Guangxian, et al. Aircraft measurements of a stable stratiform cloud with embedded convection in eastern Taihang Mountain of North China: Characteristics of embedded convection and melting layer structure[J]. Chinese Journal of Atmospheric Sciences, 2019, 43(6): 1365-1384. ]
[12] 庞朝云, 李宝梓, 张丰伟, 等. 祁连山北坡一次人工增雨降水过程雨滴谱特征分析[J]. 气象科技, 2021, 49(4): 621-628.
[12] [ Pang Chaoyun, Li Baozi, Zhang Fengwei, et al. Raindrop spectrum characteristics of an artificial precipitation enhancement process on northern slope of Qilian Mountains[J]. Meteorological Science and Technology, 2021, 49(4): 621-628. ]
[13] 侯文轩, 华维, 郭艺媛, 等. 青藏高原那曲地区一次对流云降水的数值模拟[J]. 高原山地气象研究, 2020, 40(3): 18-28.
[13] [ Hou Wenxuan, Hua Wei, Guo Yiyuan, et al. Numerical simulation of a convective cloud precipitation at Naqu on the Tibetan plateau[J]. Plateau and Mountain Meteorology Research, 2020, 40(3): 18-28. ]
[14] Xue L, Tenssendorf S, Nelson E, et al. Implementation of a silver iodide cloud-seeding parameterization in WRF. Part II: 3D simulations of actual seeding events and sensitivity tests[J]. Journal of Applied Meteorology & Climatology, 2013, 52(6): 1458-1476.
[15] 李安泰, 何宏让. 不同云微物理参数化方案对舟曲“8.8”暴雨过程模拟的影响[J]. 气象与减灾研究, 2011, 34(3): 9-16.
[15] [ Li Antai, He Hongrang. Impact of different cloud microphysical parameterization schemes on numeric simulation results of “8.8” rainstirm process in Zhouqu[J]. Meteorology and Disaster Reduction Research, 2011, 34(3): 9-16. ]
[16] 朱格利, 林万涛, 曹艳华. 用WRF模式中不同云微物理参数化方案对华南一次暴雨过程的数值模拟和性能分析[J]. 大气科学, 2014, 38(3): 513-523.
[16] [ Zhu Geli, Lin Wantao, Cao Yanhua, et al. Numerical simulation of a rainstorm event over south china by using various cloud microphysics parameterization schemes in WRF Model and its performance analysis[J]. Chinese Journal of Atmospheric Sciences, 2014, 38(3): 513-523. ]
[17] 丁明月, 王俐俐, 辛渝, 等. WRF云微物理参数化方案对新疆暴雨模拟能力的TS评分分析[J]. 干旱区研究, 2019, 36(6): 1411-1418.
[17] [ Ding Mingyue, Wang Lili, Xin Yu, et al. TS score of WRF cloud microphysical parameterization scheme to the simulation capability of precipitation in Xinjiang[J]. Arid Zone Research, 2019, 36(6): 1411-1418. ]
[18] 周志敏, 崔春光, 胡扬, 等. 一次梅雨锋暴雨过程数值模拟的云微物理参数化敏感性研究[J]. 大气科学, 2021, 45(6): 1292-1312.
[18] [ Zhou Zhimin, Cui Chunguang, Hu Yang, et al. Sensitivity of parametrization of cloud micro physics[J]. Chinese Journal of Atmospheric Sciences, 2021, 45(6): 1292-1312. ]
[19] 邵元亭, 刘奇俊, 荆志娟. 祁连山夏季地形云和降水宏微观结构的数值模拟[J]. 干旱气象, 2013, 31(1): 18-23.
[19] [ Shao Yuanting, Liu Qijun, Jing Zhijuan. Numerical simulation on macrophysics and microphysics structure of the orographic cloud and precipitation in summer of the Qilian Mountains[J]. Journal of Arid Meteorology, 2013, 31(1): 18-23. ]
[20] 段海霞, 刘新伟, 蒲朝霞. 不同云方案对祁连山降水模拟的影响[J]. 大气科学学报, 2013, 36(3): 367-378.
[20] [ Duan Haixia, Liu Xinwei, Pu Chaoxia. Cloud microphysical processes on simulation of precipitation in Qilian Mountains[J]. Transactions of Atmospheric Sciences, 2013, 36(3): 367-378. ]
[21] 魏倩, 隆霄, 赵建华, 等. 边界层参数化方案对一次西北地区沙尘天气过程影响的数值模拟研究[J]. 干旱区研究, 2021, 38(1): 163-177.
[21] [ Wei Qian, Long Xiao, Zhao Jianhua, et al. Impact of boundary layer parameterization schemes on the simulation of a dust event over Northwest China[J]. Arid Zone Research, 2021, 38(1): 163-177. ]
[22] Thompson G, Rasmussen R M, Manning K. Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis[J]. Monthly Weather Review, 2004, 132(2): 519-542.
文章导航

/