农业生态

农牧交错带不同利用方式土壤粒径分布特征——以呼和浩特市武川县为例

展开
  • 1.内蒙古农业大学沙漠治理学院,内蒙古 呼和浩特 010018
    2.内蒙古自治区气象科学研究所,内蒙古 呼和浩特 010051
    3.锡林郭勒盟水利局水利事业发展中心,内蒙古 锡林浩特 026099
    4.内蒙古乌兰察布市四子王旗吉生太镇,内蒙古 乌兰察布 011826
付东升(1996-),男,硕士研究生,主要从事水土保持与荒漠化防治研究. E-mail: 1145058064@qq.com

收稿日期: 2021-09-23

  修回日期: 2021-11-25

  网络出版日期: 2022-09-26

基金资助

国家自然科学基金(42067015);内蒙古自治区自然科学基金(2020MS03038)

Distribution characteristics of soil particle size in farming-pastoral ecotone: A case study of Wuchuan County in Inner Mongolia

Expand
  • 1. College of Desert Control Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, Inner Mongolia, China
    2. Inner Mongolia Meteorological Institute, Hohhot 010051, Inner Mongolia, China
    3. Water Conservancy Development Center, Xilin Gol League Water Conservancy Bureau, Xilinhot 026099, Inner Mongolia, China
    4. Jishengtai Town, Siziwang Banner, Ulanqab City, Inner Mongolia, Ulanqab City, Ulanqab 011826, Inner Mongolia, China

Received date: 2021-09-23

  Revised date: 2021-11-25

  Online published: 2022-09-26

摘要

以呼和浩特市武川县不同农田和天然草地为研究对象,采用野外原位监测和室内试验结合的方法,对典型小麦留茬地、葵花留茬地、翻耕地、退耕地4种农田土壤进行研究,并通过分析平均粒径、标准差、偏度、峰度,对不同利用方式下土地抗风蚀能力进行探讨。研究结果表明:(1) 研究区土壤以细砂、极细砂和粉粒为主,占比达80%~85%。(2) 土壤粒度组成由细到粗为:翻耕1 a>天然草地>翻耕边坡>小麦留茬>翻耕15 a>退耕5 a>葵花留茬,沙粒平均粒径为2.12~2.61。(3) 各层土壤分选性较差,偏度均表现为正偏且近于对称,峰度属于宽平态。土壤易风蚀颗粒粒径范围在200~400 μm。(4) 与天然草地相比,农田垦殖利用导致土壤粒径分布范围扩大,粒径整体趋于粗粒化。

本文引用格式

付东升,任晓萌,王燕玲,张翠英,蒙仲举 . 农牧交错带不同利用方式土壤粒径分布特征——以呼和浩特市武川县为例[J]. 干旱区研究, 2022 , 39(4) : 1322 -1332 . DOI: 10.13866/j.azr.2022.04.32

Abstract

This paper takes different farmland and natural grassland in Wuchuan County, Hohhot, as the research object and adopts the method of combining in-situ field monitoring and indoor test to study the following four types of farmland soils: typical wheat stubble land, sunflower stubble land, plowed land, and abandoned farmland. The wind erosion resistance capability of land under different utilization modes is discussed by analyzing the average particle size, standard deviation, skewness, and kurtosis. Research results show the following: (1) The soil in the study area is dominated by fine sand, very fine sand, and silt, accounting for 80% to 85%. (2) The soil particle size composition from fine to coarse is as follows: tillage 1 a > natural grassland > tillage slope > wheat stubble > tillage 15 a > abandoned 5 a > sunflower stubble. Meanwhile, the average particle size of sand is 2.12-2.61. (3) The soil sorting capability of each layer is poor, the skewness is positive and nearly symmetrical, and the kurtosis belongs to the broad flat. The particle size range of soil that is prone to wind erosion is between 200 and 400 μm. (4) Compared with natural grassland, farmland reclamation and utilization lead to the expansion of soil particle size distribution, and the overall particle size is coarse.

参考文献

[1] 刘孟竹, 张红娟, 任贺宇, 等. 退耕还林背景下北方农牧交错带土壤保持功能时空变化[J]. 水土保持研究, 2021, 28(5): 172-178.
[1] [Liu Mengzhu, Zhang Hongjuan, Ren Heyu, et al. Spatiotemporal variations of the soil conservation in the agro-pastoral ecotone of northern China under grain for green program[J]. Research of Soil and Water Conservation, 2021, 28(5): 172-178.]
[2] 杜雅仙, 樊瑾, 李诗瑶, 等. 荒漠草原不同植被微斑块土壤粒径分布分形特征与养分的关系[J]. 应用生态学报, 2019, 30(11): 3716-3724.
[2] [Du Yaxian, Fan Jin, Li Shiyao, et al. Fractal dimension characteristics of soil particle size distribution under different vegetation patches in desert steppe and its relationship with soil nutrients[J]. Chinese Journal of Applied Ecology, 2019, 30(11): 3716-3724.]
[3] 高君亮, 罗凤敏, 高永, 等. 农牧交错带不同土地利用类型土壤碳氮磷生态化学计量特征[J]. 生态学报, 2019, 39(15): 5594-5602.
[3] [Gao Junliang, Luo Fengmin, Gao Yong, et al. N, and P stoichiometry of different land use patterns in the agriculture-pasture ecotone of northern China[J]. Acta Ecologica Sinica, 2019, 39(15): 5594-5602.]
[4] 戴路炜, 唐海萍, 张钦, 等. 北方农牧交错带多伦县生态系统服务权衡与协同关系研究[J]. 生态学报, 2020, 40(9): 2863-2876.
[4] [Dai Luwei, Tang Haiping, Zhang Qin, et al. The trade-off and synergistic relationship among ecosystem services: A case study in Duolun County, the agro-pastoral ecotone of northern China[J]. Acta Ecologica Sinica, 2020, 40(9): 2863-2876.]
[5] 苏永中, 杨荣, 刘婷娜. 施肥对新垦绿洲风沙土肥力及碳积累的影响[J]. 中国沙漠, 2019, 39(3): 1-6.
[5] [Su Yongzhong, Yang Rong, Liu Tingna. Effects of long-term different fertilization on soil fertility and soil organic carbon accumulation in psamments of oasis farmland[J]. Journal of Desert Research, 2019, 39(3): 1-6.]
[6] 郑顺安, 刘代丽, 章明奎, 等. 长期秸秆还田对污染农田土壤与农产品重金属的影响[J]. 水土保持学报, 2020, 34(2): 354-359.
[6] [Zheng Shun’an, Liu Daili, Zhang Mingkui, et al. Effects of long-term straw returning on heavy metals of soil and agricultural products in the polluted farmland[J]. Journal of Soil and Water Conservation, 2020, 34(2): 354-359.]
[7] 张鑫, 宁小莉, 佟宝全. 阴山北麓农牧交错区居民点空间分异特征——以包头市达尔罕茂明安联合旗为例[J]. 干旱区资源与环境, 2020, 34(5): 78-84.
[7] [Zhang Xin, Ning Xiaoli, Tong Baoquan. Spatial differentiation of residential areas in the farming-pastoral ecotone on the north foot of Yinshan Mountain[J]. Journal of Arid Land Resources and Environment, 2020, 34(5): 78-84.]
[8] 郭挺, 徐先英, 柴成武, 等. 民勤绿洲-荒漠过渡带微区土壤水分及粒度特征研究[J]. 中国农学通报, 2015, 31(5): 157-163.
[8] [Guo Ting, Xu Xianying, Chai Chengwu, et al. Soil moisture and grain size characteristic of micro-area in oasis-desert of Minqin[J]. Chinese Agricultural Science Bulletin, 2015, 31(5): 157-163.]
[9] 樊立娟, 胡广录, 廖亚鑫, 等. 河西走廊斑块植被区表层土壤粒径及其分形维数的空间变异特征[J]. 干旱区研究, 2015, 32(6): 1068-1075.
[9] [Fan Lijuan, Hu Guanglu, Liao Yaxin, et al. Spatial variability of soil particle size and its fractal dimensionof patchy vegetation in Hexi Corridor[J]. Arid Zone Research, 2015, 32(6): 1068-1075.]
[10] 贾萌萌, 张忠良, 雷加强, 等. 塔里木沙漠公路防护林地土壤粒径分布的分形特征[J]. 干旱区研究, 2015, 32(4): 674-679.
[10] [Jia Mengmeng, Zhang Zhongliang, Lei Jiaqiang, et al. Fractal characteristics of soil particle size distribution in protection forest of Tarim Desert highway[J]. Arid Zone Research, 2015, 32(4): 674-679.]
[11] Sun C, Liu G, Xue S. Natural succession of grassland on the Loess Plateau of China affects multifractal characteristics of soil particle-size distribution and soil nutrients[J]. Ecological Research, 2016, 31(6): 891-902.
[12] 王敬哲, 丁建丽, 王飞, 等. 艾比湖湿地不同盐渍化土壤粒度组成及可蚀性研究[J]. 土壤, 2018, 50(3): 598-605.
[12] [Wang Jingzhe, Ding Jianli, Wang Fei, et al. Particle size distribution (PSD) and erodibility of soils under different salinization degrees in Ebinur Lake Wetland[J]. Soils, 2018, 50(3): 598-605.]
[13] 杜海燕, 周智彬, 刘凤山, 等. 绿洲化过程中阿拉尔垦区土壤粒径分形变化特征[J]. 干旱区研究, 2013, 30(4): 615-622.
[13] [Du Haiyan, Zhou Zhibin, Liu Fengshan, et al. Variation of fractal dimension of soil particle size distribution in the Aral reclamation area in oasis development[J]. Arid Zone Research, 2013, 30(4): 615-622.]
[14] 徐志伟, 鹿化煜. 毛乌素沙地风沙环境变化研究的理论和新认识[J]. 地理学报, 2021, 76(9): 2203-2223.
[14] [Xu Zhiwei, Lu Huayu. Aeolian environmental change studies in the Mu Us Sandy Land, North-central China: Theory and recent progress[J]. Acta Geographica Sinica, 2021, 76(9): 2203-2223.]
[15] Li Y, Kalnay E, Motesharrei S, et al. Climate model shows large-scale wind and solar farms in the Sahara increase rainand vegetation. Science, 2018, 361(6406): 1019-1022.
[16] Abell J T, Pullen A, Lebo Z, et al. A wind-albedo-wind feedback driven by landscape evolution[J]. Nature Communications, 2020, 11(1): 96.
[17] Huang J P, Li Y, Fu C B, et al. Dryland climate change: Recent progress and challenges[J]. Reviews of Geophysics, 2017, 55(3): 719-778.
[18] 李胜龙, 李和平, 林艺, 等. 东北地区不同耕作方式农田土壤风蚀特征[J]. 水土保持学报, 2019, 33(4): 110-118, 220.
[18] [Li Shenglong, Li Heping, Lin Yi, et al. Effects of tillage methods on wind erosion in farmland of northeastern China[J]. Journal of Soil and Water Conservation, 2019, 33(4): 110-118, 220.]
[19] 胡静霞, 杨新兵. 我国土地荒漠化和沙化发展动态及其成因分析[J]. 中国水土保持, 2017, 38(7): 55-59, 69.
[19] [Hu Jingxia, Yang Xinbing. Development trend and cause of formation of land desertification and sandification in China[J]. Soil and Water Conservation in China, 2017, 38(7): 55-59, 69.]
[20] Donald Margaret R, Hazelton Pamela A, Clements Anne Marie. Potential for using soil particle-size data to infer geological parent material in the Sydney Region[J]. Soil Research, 2013, 51(4): 301-310.
[21] 王少博, 曹亚倩, 冯倩倩, 等. 保护性耕作对棕壤粒径分形特征及碳氮比分布的影响[J]. 植物营养与肥料学报, 2019, 25(5): 792-804.
[21] [Wang Shaobo, Cao Yaqian, Feng Qianqian, et al. Impacts of conservation tillage on soil particulate composition and distribution of soil carbon and nitrogen in brown soil[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(5): 792-804.]
[22] Liu X, Zhang G C, Wang Y Q, et al. Fractal features of soil particle-size distribution as affected by plant communities in the forested region of Mountain Yimeng, China[J]. Geoderma, 2009, 154(1): 123-130.
[23] 李玄姝, 常春平, 王仁德. 河北坝上土地利用方式对农田土壤风蚀的影响[J]. 中国沙漠, 2014, 34(1): 23-28.
[23] [Li Xuanshu, Chang Chunping, Wang Rende. Influence of land use ways on the farmland soil wind erosion in Bashang area, Hebei, China[J]. Journal of Desert Research, 2014, 34(1): 23-28.]
[24] 祁帅, 汪季, 党晓宏, 等. 3种低立式沙障内表层沉积物粒度特征研究[J]. 干旱区研究, 2021, 38(3): 875-881.
[24] [Qi Shuai, Wang Ji, Dang Xiaohong, et al. Grain size characteristics of surface sediments in three low vertical sand barriers[J]. Arid Zone Research, 2021, 38(3): 875-881.]
[25] Yan Y C, Xin X P, Xu X L, et al. Quantitative effects of wind erosion on the soil texture and soil nutrients under different vegetation coverage in a semiarid steppe of northern China[J]. Plant and Soil, 2013, 369(1/2): 585-598.
[26] 葛拥晓, 马龙, 张登清. 新疆艾比湖干涸湖底沉积物粒径分布及其对风蚀的响应[J]. 干旱区研究, 2014, 31(4): 636-642.
[26] [Ge Yongxiao, Ma Long, Zhang Dengqing. Response of granularity distribution to wind erosion in the playa of the Ebinur Lake, Xinjiang, Northwest China[J]. Arid Zone Research, 2014, 31(4): 636-642.]
[27] 王燕, 蒙仲举, 丁延龙, 等. 基于多重分形的半干旱区农田表层土壤粒径分布特征研究[J]. 土壤, 2018, 50(4): 826-831.
[27] [Wang Yan, Meng Zhongju, Ding Yanlong, et al. Study on particle size distribution characteristics of farmland soil in semi-arid region based on multi-fractal[J]. Soils, 2018, 50(4): 826-831.]
[28] 邱捷, 王洪德, 郑一鹏, 等. 海涂围垦区不同土地利用类型土壤颗粒分形特征[J]. 农业现代化研究, 2020, 41(5): 882-888.
[28] [Qiu Jie, Wang Hongde, Zheng Yipeng, et al. Fractal features of soil particles under different land uses in a coastal reclamation area[J]. Research of Agricultural Modernization, 2020, 41(5): 882-888.]
[29] 崔晓. 冀北山地接坝区农田保护性耕作布设及其对土壤理化性质的影响[D]. 北京: 北京林业大学, 2019.
[29] [Cui Xiao. Layout of Farmland Conservation Tillage and Its Impacts on Soil Physical and Chemical Properties in Jieba Mountainou Area in Northern Hebei Province, China[D]. Beijing: Beijing Forestry University, 2019.]
[30] 许艳, 张仁陟. 陇中黄土高原不同耕作措施下土壤磷动态研究[J]. 土壤学报, 2017, 54(3): 670-681.
[30] [Xu Yan, Zhang Renzhi. Dynamics of soil phosphorus as affected by tillage on the Loess Plateau in central Gansu, China[J]. Acta Pedologica Sinica, 2017, 54(3): 670-681.]
[31] 刘汉涛. 阴山北麓保护性耕作地表抗风蚀效果的试验研究[D]. 呼和浩特: 内蒙古农业大学, 2006.
[31] [Liu Hantao. An Experimental Study of Anti-Wind Erosion Capacity of Connservation Farming System in the Northern Foot of Yinshan Mountain[D]. Hohhot: Inner Mongolia Agricultural University, 2006.]
[32] 李晓佳, 海春兴, 刘广通. 阴山北麓不同用地方式下春季土壤可蚀性研究[J]. 干旱区地理, 2007, 30(6): 926-932.
[32] [Li Xiaojia, Hai Chunxing, Liu Guangtong. Spring soil erodibility for different land use patterns in the north piedmont of the Yinshan Mountains[J]. Arid Land Geography, 2007, 30(6): 926-932.]
[33] Mohammadi M H, Meskini-Vishkaee F. Predicting soil moisture characteristic curves from continuous particle-size distribution data[J]. Pedosphere, 2013, 23(1): 70-80.
[34] Hu H C, Tian F Q, Hu H P. Soil particle size distribution and its relationship with soil water and salt under mulched drip irrigation in Xinjiang of China[J]. Science China Technological Sciences, 2011, 54(6): 1568-1574.
[35] 童春元, 李钢铁, 卢立娜, 等. 杨树低效林下土壤粒径分布与分形特征[J]. 水土保持通报, 2019, 39(5): 308-315.
[35] [Tong Chunyuan, Li Gangtie, Lu Li’na, et al. Distribution of soil size and fractal characteristics under low-efficiency poplar forests[J]. Bulletin of Soil and Water Conservation, 2019, 39(5): 308-315.]
[36] 苑依笑, 王仁德, 常春平, 等. 坝上地区不同年限退耕工程对土壤的保护作用[J]. 干旱区资源与环境, 2018, 32(9): 84-89.
[36] [Yuan Yixiao, Wang Rende, Chang Chunping, et al. Protective effect of cropland conversion with different years on soil in Bashang district, North China[J]. Journal of Arid Land Resources and Environment, 2018, 32(9): 84-89.]
[37] 王仁德, 肖登攀, 常春平, 等. 改进粒度对比法估算单次农田风蚀量[J]. 农业工程学报, 2014, 30(21): 278-285.
[37] [Wang Rende, Xiao Dengpan, Chang Chunping, et al. Estimation on farmland soil loss by single wind erosion using improved particle-size distribution comparison method[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(21): 278-285.]
[38] 南岭, 杜灵通, 展秀丽. 土壤风蚀可蚀性研究进展[J]. 土壤, 2014, 46(2): 204-211.
[38] [Nan Ling, Du Lingtong, Zhan Xiuli. Advances in study on soil erodibility for wind erosion[J]. Soils, 2014, 46(2): 204-211.]
[39] 高天明, 张瑞强, 黄建国. 开垦对阴山北麓农牧交错区草原坡地的破坏作用[J]. 中国农业科技导报, 2014, 16(1): 125-130.
[39] [Gao Tianming, Zhang Ruiqiang, Huang Jianguo. Damage of reclamation on grassland slope in farming pastoral interleaving areas, North Yinshan Mountains[J]. Journal of Agricultural Science and Technology, 2014, 16(1): 125-130.]
[40] 杨立辉, 叶玮, 郑祥民, 等. 河漫滩相沉积与风成沉积粒度判别函数的建立及在红土中应用[J]. 地理研究, 2014, 33(10): 1848-1856.
[40] [Yang Lihui, Ye Wei, Zheng Xiangmin, et al. The discriminant function with grain size of floodplain and aeolian sediments and its application in the quaternary red clay[J]. Geographical Research, 2014, 33(10): 1848-1856.]
[41] 岳高伟, 贾慧娜, 蔺海晓. 土壤风蚀过程颗粒释放机理研究[J]. 干旱区地理, 2012, 35(2): 248-253.
[41] [Yue Gaowei, Jia Huina, Lin Haixiao. Release mechanism of soil particles in soil wind erosion[J]. Arid Land Geography, 2012, 35(2): 248-253.]
[42] 李晓丽, 申向东. 裸露耕地土壤风蚀跃移颗粒分布特征的试验研究[J]. 农业工程学报, 2006, 22(5): 74-77.
[42] [Li Xiaoli, Shen Xiangdong. Experimental study on the distribution characteristics of the saltation particle of aeolian sediment in bare tillage[J]. Transactions of the Chinese Society of Agricultural Engineering, 2006, 22(5): 74-77.]
文章导航

/