生态与环境

生态系统服务权衡强度与供需匹配度的关联性分析——以山西省为例

展开
  • 1.山西财经大学资源环境学院,山西 太原 030006
    2.北京师范大学地理科学学部地表过程与资源生态国家重点实验室,北京 100875
冯强(1981-),男,博士,副教授,主要研究方向为土地利用与生态响应. E-mail: fengqiang921@163.com

收稿日期: 2021-11-29

  修回日期: 2022-01-03

  网络出版日期: 2022-09-26

基金资助

国家自然科学基金(41771197);山西省基础研究计划资助项目(20210302123481)

Relationship between trade-off intensity of ecosystem services and matching degree of supply and demand: A case study in Shanxi Province

Expand
  • 1. College of Resources and Environment, Shanxi University of Finance and Economics, Taiyuan 030006, Shanxi, China
    2. State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China

Received date: 2021-11-29

  Revised date: 2022-01-03

  Online published: 2022-09-26

摘要

以山西省各区县为研究单元,将供给服务相对占优定义为1型权衡,将支持服务相对占优定义为2型权衡。通过冗余分析、分段线性回归等方法揭示权衡与供需的影响因素以及两者之间的关联特征。结果表明:(1) 1型权衡高值区与供需比低值区主要位于省内盆地,2型权衡与供需比高值区主要位于省内山地。(2) 1型权衡主要受耕地、林草地与气温等因素影响;2型权衡主要受耕地、林地、NDVI与土壤有机质等因素影响,但作用方向与1型权衡相反。(3) 林草地与坡度对1型供需比呈显著正效应,耕地与建设用地对其呈显著负效应;环境因子对2型供需比的影响较小。(4) 各影响因素对1型权衡与供需比的作用方向相反,是二者负向关联的内在原因。供需矛盾较小的情况下,供需比对权衡强度的响应较强烈,随着供需矛盾加深,这种响应反而变弱。该关联特征指示了生态上的困境:人类需求增加-开发强度增加-1型权衡增强-供需矛盾加剧。2型权衡与供需比存在较弱的正向关联,指示了生态盈余的局面。本研究发现生态系统服务权衡与供需存在关联,进而揭示了两者的关联特征及其形成机制,可为国土空间生态修复与管理提供依据。

本文引用格式

冯强,赵文武,段宝玲 . 生态系统服务权衡强度与供需匹配度的关联性分析——以山西省为例[J]. 干旱区研究, 2022 , 39(4) : 1222 -1233 . DOI: 10.13866/j.azr.2022.04.23

Abstract

Revealing the relationship characteristics between the intensity of ecosystem service (ES) tradeoffs and the matching degree of ES supply and demand can provide possible ways to alleviate the ES conflict and supply-demand contradiction simultaneously. The districts and counties of Shanxi Province are selected in this study. Considering the tradeoff between supply and support service, tradeoff type 1 is when the supply service is relatively enhanced but support service is decreased, whereas tradeoff type 2 is the opposite condition. The influencing factors of ES tradeoffs and supply-demand and their related characteristics are revealed by redundancy analysis and piecewise linear regression. The following results are presented. (1) The high-value regions of tradeoff type 1 and the low-value regions of supply-demand ratio are mainly located in the basins, and the high-value regions of tradeoff type 2 and supply-demand ratio are mainly located in the mountainous area. (2) Tradeoff type 1 is mainly affected by cropland, forestland, grassland, air temperature, and other factors. Meanwhile, tradeoff type 2 is primarily influenced by cropland, forestland, NDVI, and soil organic matter, but the direction of effects is opposite to that of tradeoff type 1. (3) The forestland, grassland, and slope gradient have significant positive effects on the supply-demand ratio of type 1, while the cropland and construction land have significant negative effects. The factors have minimal effects on the supply-demand ratio of type 2. (4) The effects of factor direction on tradeoff type 1 and the supply-demand ratio are opposite, which mainly contributes to the negative correlation between them. The response of the ES supply-demand ratio to tradeoffs is relatively strong when the contradiction between ES supply and demand is small. However, this response weakens with the deepening of the supply-demand contradiction. The relationship characteristics indicate the ecological dilemma: the human demand increases-development intensity increases-tradeoff type 1 enhances-the contradiction between supply and demand intensifies. A weak positive correlation is observed between tradeoff type 2 and supply-demand ratio, indicating the situation of ecological surplus. Overall, a correlation is observed between ES tradeoff and supply-demand. The results generally present the correlation characteristics and its formation mechanism, which can provide a scientific basis for land ecological restoration and management.

参考文献

[1] Costanza R, D’ Arge R, Groot R D, et al. The value of the world’s ecosystem services and natural capital[J]. Nature, 1997, 387(6630): 253-260.
[2] MA(Millennium Ecosystem Assessment). Ecosystems and Human Well-being: Synthesis[M]. Washington DC: Island Press, 2005: 6-11.
[3] Bennett E M, Peterson G D, Gordon L J. Understanding relationships among multiple ecosystem services[J]. Ecology Letters, 2009, 12(12): 1394.
[4] 彭建, 胡晓旭, 赵明月, 等. 生态系统服务权衡研究进展: 从认知到决策[J]. 地理学报, 2017, 72(6): 960-973.
[4] [Peng Jian, Hu Xiaoxu, Zhao Mingyue, et al. Research progress on ecosystem service trade-offs: From cognition to decision-making[J]. Acta Geographica Sinica, 2017, 72(6): 960-973.]
[5] 傅伯杰, 于丹丹. 生态系统服务权衡与集成方法[J]. 资源科学, 2016, 38(1): 1-9.
[5] [Fu Bojie, Yu Dandan. Trade-off analyses and synthetic integrated method of multiple ecosystem services[J]. Resources Science, 2016, 38(1): 1-9.]
[6] 戴尔阜, 王晓莉, 朱建佳, 等. 生态系统服务权衡: 方法、模型与研究框架[J]. 地理研究, 2016, 35(6): 1005-1016.
[6] [Dai Erfu, Wang Xiaoli, Zhu Jianjia, et al. Methods, tools and research framework of ecosystem service trade-offs[J]. Geographical Research, 2016, 35(6): 1005-1016.]
[7] 赵文武, 刘月, 冯强, 等. 人地系统耦合框架下的生态系统服务[J]. 地理科学进展, 2018, 37(1): 139-151.
[7] [Zhao Wenwu, Liu Yue, Feng Qiang, et al. Ecosystem services for coupled human and environment systems[J]. Progress in Geography, 2018, 37(1): 139-151.]
[8] Zheng H, Wang L J, Wu T. Coordinating ecosystem service trade-offs to achieve win-win outcomes: A review of the approaches[J]. Journal of Environmental Sciences, 2019, 82: 103-112.
[9] Jiang C J, Guo H W, Wei Y P, et al. Ecological restoration is not sufficient for reconciling the trade-off between soil retention and water yield: A contrasting study from catchment governance perspective[J]. Science of the Total Environment, 2021, 754: 142139.
[10] Zhao W W, Liu Y, Daryanto S, et al. Metacoupling supply and demand for soil conservation service[J]. Current Opinion in Environmental Sustainability, 2018, 33: 136-141.
[11] Feng Q, Zhao W W, Fu B J, et al. Ecosystem service trade-offs and their influencing factors: A case study in the Loess Plateau of China[J]. Science of the Total Environment, 2017, 607-608: 1250-1263.
[12] Feng Q, Zhao W W, Hu X P, et al. Trading-off ecosystem services for better ecological restoration: A case study in the Loess Plateau of China[J]. Journal of Cleaner Production, 2020, 257: 120469.
[13] Kathleen C S, Richard S Q, Nils B, et al. Quantifying stakeholder understanding of an ecosystem service trade-off[J]. Science of the Total Environment, 2019, 651: 2524-2534.
[14] Forio M, Villa-Cox G, Echelpoel W V, et al. Bayesian Belief Network models as trade-off tools of ecosystem services in the Guayas River Basin in Ecuador[J]. Ecosystem Services, 2020, 44: 101124.
[15] Sun X Y, Shan R F, Liu F. Spatio-temporal quantification of patterns, trade-offs and synergies among multiple hydrological ecosystem services in different topographic basins[J]. Journal of Cleaner Production, 2020, 268: 122338.
[16] Su B Q, Su Z X, Shangguan Z P. Trade-off analyses of plant biomass and soil moisture relations on the Loess Plateau[J]. Catena, 2021, 197: 104946.
[17] Wang C, Wang S, Fu B J, et al. Precipitation gradient determines the tradeoff between soil moisture and soil organic carbon, total nitrogen, and species richness in the Loess Plateau, China[J]. Science of the Total Environment, 2017, 575: 1538.
[18] 高江波, 王欢. 基于GWR模型的喀斯特地区产流量与土壤侵蚀权衡的时空特征——以贵州省三岔河流域为例[J]. 山地学报, 2019, 37(4): 518-527.
[18] [Gao Jiangbo, Wang Huan. Spatio-temporal tradeoff of Karst water yield and soil erosion based on GWR model: A case study in Sancha River Basin of Guizhou province, China[J]. Mountain Research, 2019, 37(4): 518-527.]
[19] Maud A M, Penelope L, Berta M, et al. An interdisciplinary methodological guide for quantifying associations between ecosystem services[J]. Global Environmental Change, 2014, 28: 298-308.
[20] Peng J, Wang X Y, Liu Y X, et al. Urbanization impact on the supply-demand budget of ecosystem services: Decoupling analysis[J]. Ecosystem Services, 2020, 44: 101139.
[21] Rozas-Vasquez D, Fuerst C, Geneletti D. Integrating ecosystem services in spatial planning and strategic environmental assessment: The role of the cascade model[J]. Environmental Impact Assessment Review, 2019, 78: 106291.
[22] 马琳, 刘浩, 彭建, 等. 生态系统服务供给和需求研究进展[J]. 地理学报, 2017, 72(7): 1277-1289.
[22] [Ma Lin, Liu Hao, Peng Jian, et al. A review of ecosystem services supply and demand[J]. Acta Geographica Sinica, 2017, 72(7): 1277-1289.]
[23] 王嘉丽, 周伟奇. 生态系统服务流研究进展[J]. 生态学报, 2019, 39(12): 4213-4222.
[23] [Wang Jiali, Zhou Weiqi. Ecosystem service flows: Recent progress and future perspectives[J]. Acta Ecologica Sinica, 2019, 39(12): 4213-4222.]
[24] 杨丽雯, 董丽青, 张立伟, 等. 固碳服务供需平衡和服务流量化评估——以引黄入晋南干线为例[J]. 资源科学, 2019, 41(3): 557-571.
[24] [Yang Liwen, Dong Liqing, Zhang Liwei, et al. Quantitative assessment of carbon sequestration service supply and demand and service flows: A case study of the Yellow River Diversion Project South Line[J]. Resources Science, 2019, 41(3): 557-571.]
[25] 刘慧敏, 范玉龙, 丁圣彦. 生态系统服务流研究进展[J]. 应用生态学报, 2016, 27(7): 2161-2171.
[25] [Liu Huimin, Fan Yulong, Ding Shengyan. Research progress of ecosystem service flow[J]. Chinese Journal of Applied Ecology, 2016, 27(7): 2161-2171.]
[26] Li X, Yu X, Wu K N, et al. Land-use zoning management to protecting the regional key ecosystem services: A case study in the city belt along the Chaobai River, China[J]. Science of The Total Environment, 2020, 762: 143167.
[27] 王壮壮, 张立伟, 李旭谱, 等. 区域生态系统服务供需风险时空演变特征——以陕西省产水服务为例[J]. 生态学报, 2020, 40(6): 1887-1900.
[27] [Wang Zhuangzhuang, Zhang Liwei, Li Xupu, et al. Spatio-temporal pattern of supply-demand risk of ecosystem services at regional scale: A case study of water yield service in Shaanxi Province[J]. Acta Ecologica Sinica, 2020, 40(6): 1887-1900.]
[28] Wang L J, Zheng H, Wen Z. Ecosystem service synergies/trade-offs informing the supply-demand match of ecosystem services: Framework and application[J]. Ecosystem Services, 2019, 37: 100939.
[29] Feng Q, Zhao W W, Duan B L, et al. Coupling trade-offs and supply-demand of ecosystem services (ES): A new opportunity for ES management[J]. Geography and Sustainability, 2021, 2: 275-280.
[30] 谢高地, 甄霖, 鲁春霞, 等. 一个基于专家知识的生态系统服务价值化方法[J]. 自然资源学报, 2008, 23(9): 911-920.
[30] [Xie Gaodi, Zhen Lin, Lu Chunxia, et al. Expert knowledge based valuation method of ecosystem services in China[J]. Journal of Natural Resources, 2008, 23(9): 911-920.]
[31] 谢高地, 张彩霞, 张雷明, 等. 基于单位面积价值当量因子的生态系统服务价值化方法改进[J]. 自然资源学报, 2015, 30(8): 1243-1254.
[31] [Xie Gaodi, Zhang Caixia, Zhang Leiming, et al. Improvement of the evaluation method for ecosystem service value based on per unit area[J]. Journal of Natural Resources, 2015, 30(8): 1243-1254.]
[32] Bradford J B, D'amato A W. Recognizing trade-offs in multi-objective land management[J]. Frontiers in Ecology and the Environment, 2012, 10(4): 210-216.
[33] Lu N, Fu B, Jin T, et al. Trade-off analyses of multiple ecosystem services by plantations along a precipitation gradient across Loess Plateau landscapes[J]. Landscape Ecology, 2014, 29(5): 1697-1708.
[34] Yang S Q, Zhao W W, Liu Y, et al. Influence of land use change on the ecosystem service trade-offs in the ecological restoration area: Dynamics and scenarios in the Yanhe watershed, China[J]. Science of The Total Environment, 2018, 644(23): 556-566.
[35] Liang J, Li S, Li X, et al. Trade-off analyses and optimization of water-related ecosystem services (WRESs) based on land use change in a typical agricultural watershed, southern China[J]. Journal of Cleaner Production, 2021, 279: 123851.
[36] 段宝玲, 冯强, 原燕燕, 等. 钱江源国家公园体制试点区生态系统服务权衡与协同分析[J]. 旅游科学, 2021, 35(5): 11-31.
[36] [Duan Baoling, Feng Qiang, Yuan Yanyan, et al. Ecosystem Services Trade-offs and Synergies in Qianjiangyuan National Park System Pilot[J]. Tourism Science, 2021, 35(5): 11-31.]
[37] 谢余初, 张素欣, 林冰, 等. 基于生态系统服务供需关系的广西县域国土生态修复空间分区[J]. 自然资源学报, 2020, 35(1): 217-229.
[37] [Xie Yuchu, Zhang Suxin, Lin Bing, et al. Spatial zoning for land ecological consolidation in Guangxi based on the ecosystem services supply and demand[J]. Journal of Natural Resources, 2020, 35(1): 217-229.]
[38] 王萌辉, 白中科, 董潇楠. 基于生态系统服务供需的陕西省土地整治空间分区[J]. 中国土地科学, 2018, 32(11): 73-80.
[38] [Wang Menghui, Bai Zhongke, Dong Xiaonan. Land consolidation zoning in Shaanxi Province based on the supply and demand of ecosystem services[J]. China Land Science, 2018, 32(11): 73-80.]
[39] 彭建, 杨旸, 谢盼, 等. 基于生态系统服务供需的广东省绿地生态网络建设分区[J]. 生态学报, 2017, 37(13): 4562-4572.
[39] [Peng Jian, Xie Pan, et al. Zoning for the construction of green space ecological networks in Guangdong Province based on the supply and demand of ecosystem services[J]. Acta Ecologica Sinica, 2017, 37(13): 4562-4572.]
[40] 翟天林, 王静, 金志丰, 等. 长江经济带生态系统服务供需格局变化与关联性分析[J]. 生态学报, 2019, 39(15): 5414-5424.
[40] [Zhai Tianlin, Wang Jing, Jin Zhifeng, et al. Change and correlation analysis of the supply-demand pattern of ecosystem services in the Yangtze River Economic Belt[J]. Acta Ecologica Sinica, 2019, 39(15): 5414-5424.]
[41] Wang J, Zhai T L, Lin Y F, et al. Spatial imbalance and changes in supply and demand of ecosystem services in China[J]. Science of the Total Environment, 2019, 657: 781-791.
[42] 刘晶晶, 王静, 戴建旺, 等. 黄河流域县域尺度生态系统服务供给和需求核算及时空变异[J]. 自然资源学报, 2021, 36(1): 148-161.
[42] [Liu Jingjing, Wang Jing, Dai Jianwang, et al. The relationship between supply and demand of ecosystem services and its spatio-temporal variation in the Yellow River Basin[J]. Journal of Natural Resources, 2021, 36(1): 148-161.]
文章导航

/