土壤生态

降雨频率变化对尕海湿草甸土壤氮组分的影响

展开
  • 甘肃农业大学林学院,甘肃 兰州 730070
秦昊德(1996-),男,硕士研究生,主要从事水土保持与荒漠化防治研究. E-mail: 1084820241@qq.com

收稿日期: 2021-12-13

  修回日期: 2022-03-27

  网络出版日期: 2022-09-26

基金资助

甘肃省重点研发计划(18YF1 NA070);甘肃省优秀研究生“创新之星”项目(2021CXZX-364);甘肃农业大学优秀博士学位论文培育项目(YB2018004)

Effects of rainfall frequency change on soil nitrogen components in Gahai wet meadow

Expand
  • College of Forestry, Gansu Agricultural University, Lanzhou 730070, Gansu, China

Received date: 2021-12-13

  Revised date: 2022-03-27

  Online published: 2022-09-26

摘要

为探究不同降雨频率对甘南尕海湿草甸土壤铵态氮($\mathrm{NH}_{4}^{+}-\mathrm{N}$)、硝态氮($\mathrm{NO}_{3}^{-}-\mathrm{N}$)、全氮(TN)的影响,于2019年植物生长季(5—10月),通过模拟极端降雨(25 mm灌溉量)设置5种不同降雨频率处理:CK只接收自然降雨,DF1每周浇灌1次(19次×25mm),DF2每2周浇灌1次(9次×25 mm),DF3每3周浇灌1次(6次×25 mm),DF4每4周浇灌1次(4次×25 mm);所有处理均接收自然降雨。结果表明:不同降雨频率处理对尕海湿草甸土壤氮组分有显著影响(P<0.05)。降雨频率的增加提高了5—10月土壤$ \mathrm{NH}_{4}^{+}-\mathrm{N}$和$\mathrm{NO}_{3}^{-}-\mathrm{N}$含量,$ \mathrm{NH}_{4}^{+}-\mathrm{N}$和$\mathrm{NO}_{3}^{-}-\mathrm{N}$的峰值有显著升高,两者的峰值并未提前出现;与CK相比,降雨频率的增加提高了土壤$ \mathrm{NH}_{4}^{+}-\mathrm{N}$和$\mathrm{NO}_{3}^{-}-\mathrm{N}$含量,降低了TN含量;而在不同降雨频率间,随降雨频率的梯度增加,0~40 cm土层$ \mathrm{NH}_{4}^{+}-\mathrm{N}$和$\mathrm{NO}_{3}^{-}-\mathrm{N}$均呈先增后减的趋势,TN呈先减后增的趋势;不同降雨频率处理下,各土层$\mathrm{NH}_{4}^{+}-\mathrm{N}$的$\mathrm{TN}$占比均高于$\mathrm{NO}_{3}^{-}-\mathrm{N}$,且土壤$ \mathrm{NH}_{4}^{+}-\mathrm{N}$、$\mathrm{NO}_{3}^{-}-\mathrm{N}$、$\mathrm{TN}$含量均随土层深度增加而降低。

本文引用格式

秦昊德,李广,吴江琪,魏星星,王海燕,徐国荣 . 降雨频率变化对尕海湿草甸土壤氮组分的影响[J]. 干旱区研究, 2022 , 39(4) : 1191 -1199 . DOI: 10.13866/j.azr.2022.04.20

Abstract

In the context of global climate change, precipitation patterns have changed significantly, both in terms of rainfall frequency and amount of precipitation. Changes in precipitation patterns will significantly affect the ecosystem functions of wetlands, especially the process of soil nitrogen cycle transformation. To explore the effects of different rainfall frequencies on the soil ammonium nitrogen ( $\mathrm{NH}_{4}^{+}-\mathrm{N}$), nitrate nitrogen ($\mathrm{NO}_{3}^{-}-\mathrm{N}$), and total nitrogen (TN) of the Gahai wet meadow in Gannan (located in Gansu Province, China), we set five different rainfall frequencies by simulating extreme rainfall (25 mm irrigation) in the 2019 plant growth season, May-October: CK, natural rainfall only; DF1, watered once a week (19 times×25 mm); DF2, watered once every 2 weeks (9 times × 25 mm); DF3, watered once every 3 weeks (6 times×25 mm); and DF4, watered once every 4 weeks (4 times × 25 mm). All treatments were exposed to natural rainfall. The results showed that different rainfall frequencies have significant effects on the soil nitrogen components of the wet meadow (P < 0.05). The increase of rainfall frequency increased the soil $\mathrm{NH}_{4}^{+}-\mathrm{N}$ and $\mathrm{NO}_{3}^{-}-\mathrm{N}$ content in the growing season, from May to October; the peak of $\mathrm{NH}_{4}^{+}-\mathrm{N}$ and $\mathrm{NO}_{3}^{-}-\mathrm{N}$ increased significantly. Compared with CK, the increase in rainfall frequency increased the soil $\mathrm{NH}_{4}^{+}-\mathrm{N}$ and $\mathrm{NO}_{3}^{-}-\mathrm{N}$ content and reduced the TN content. Among different rainfall frequencies, with the gradient of rainfall frequency increasing, the 0-40 cm layer $ \mathrm{NH}_{4}^{+}-\mathrm{N}$ and $\mathrm{NO}_{3}^{-}-\mathrm{N}$ showed a trend of first increasing and then decreasing and $\mathrm{TN}$ showed a trend of first decreasing and then increasing. Under different rainfall frequency treatments, the proportion of TN of $\mathrm{NH}_{4}^{+}-\mathrm{N}$ in each soil layer was higher than that of $\mathrm{NO}_{3}^{-}-\mathrm{N}$, and soil$\mathrm{NH}_{4}^{+}-\mathrm{N}$, $\mathrm{NO}_{3}^{-}-\mathrm{N}$, and $\mathrm{TN}$ content decreased with the increase in soil depth.

参考文献

[1] 崔东, 闫俊杰, 刘海军, 等. 伊犁河谷不同类型湿地土壤活性有机碳组分及其含量差异[J]. 生态学杂志, 2019, 38(7): 2087-2093.
[1] [Cui Dong, Yan Junjie, Liu Haijun, et al. Soil labile organic carbon fractions and the differences of their concentrations in different types of wetlands in Yili valley[J]. Chinese Journal of Ecology, 2019, 38(7): 2087-2093.]
[2] 张文鹏, 司晓林, 王文银, 等. 氮硅添加对高寒草甸生物量和多样性的影响——以青藏高原为例[J]. 草业科学, 2016, 33(1): 38-45.
[2] [Zhang Wenpeng, Si Xiaolin, Wang Wenyin, et al. Effects of short-term nitrogen and silicon addition on above-ground biomass and biodiversity of alpine meadow of the Qinghai-Tibetan Plateau, China[J]. Pratacultural Science, 2016, 33(1): 38-45.]
[3] 刘顺, 罗达, 刘千里, 等. 川西亚高山不同森林生态系统碳氮储量及其分配格局[J]. 生态学报, 2017, 37(4): 1074-1083.
[3] [Liu Shun, Luo Da, Liu Qianli, et al. Carbon and nitrogen storage and distribution in different forest ecosystems in the subalpine of western Sichuan[J]. Acta Ecologica Sinica, 2017, 37(4): 1074-1083.]
[4] 高建梅, 董丽媛, 胡古, 等. 哀牢山中山湿性常绿阔叶林土壤氮转化的海拔效应[J]. 生态学杂志, 2011, 30(10): 2149-2154.
[4] [Gao Jianmei, Dong Liyuan, Hu Gu, et al. Altitudinal effect of soil nitrogen transformation in a montane evergreen broadleaved forest in Ailao Mountains of Southwest China[J]. Chinese Journal of Ecology, 2011, 30(10): 2149-2154.]
[5] 张晶, 林先贵, 尹睿. 参与土壤氮素循环的微生物功能基因多样性研究进展[J]. 中国生态农业学报, 2009, 17(5): 1029-1034.
[5] [Zhang Jin, Lin Xiangui, Yin Rui. Advances in functional gene diversity of microorganism in relation to soil nitrogen cycling[J]. Chinese Journal of Eco-Agriculture, 2009, 17(5): 1029-1034.]
[6] Watanabe M D B, Ortega E. Ecosystem services and biogeochemical cycles on a global scale: Valuation of water, carbon and nitrogen processes[J]. Environmental Science & Policy, 2011, 14(6): 594-604.
[7] IPCC. Climate Change 2014:Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment. Summary for Policymakers[R]. Cambridge: Cambridge University Press, 2014.
[8] 丁莹莹, 邱德勋, 吴常雪, 等. 关中平原极端降水时空变化及其与大气环流的关系[J]. 干旱区研究, 2022, 39(1): 104-112.
[8] [Ding Yingying, Qiu Dexun, Wu Changxue, et al. Spatial-temporal variations in extreme precipitation and their relationship with atmospheric circulation in the Guanzhong Plain[J]. Arid Zone Research, 2022, 39(1): 104-112.]
[9] Stocker T F, Qin D. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change[C]// The Physical Science Basis. Computational Geometry: IPCC, 2013: 710-719.
[10] 武丹丹, 井新, 林笠, 等. 青藏高原高寒草甸土壤无机氮对增温和降水改变的响应[J]. 北京大学学报(自然科学版), 2016, 52(5): 959-966.
[10] [Wu Dandan, Jin Xin, Lin Li, et al. Responses of soil inorganic nitrogen to warming and altered precipitation in an alpine meadow on the Qinghai-Tibetan Plateau[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2016, 52(5): 959-966.]
[11] 王岩, 刁华杰, 董宽虎, 等. 降水变化与氮添加对晋北盐碱化草地土壤净氮矿化的影响[J]. 应用生态学报, 2021, 32(7): 2389-2396.
[11] [Wang Yan, Diao Huajie, Dong Kuanhu, et al. Effects of precipitation change and nitrogen addition on soil net N mineralization in a saline-alkaline grassland of Northern Shanxi Province, China[J]. Chinese Journal of Applied Ecology, 2021, 32(7): 2389-2396.]
[12] Xiang S R, Doyle A, Holden P A, et al. Drying and rewetting effects on C and N mineralization and microbial activity in surface and subsurface California grassland soils[J]. Soil Biology and Biochemistry, 2008, 40(9): 2281-2289.
[13] 杨浩, 胡中民, 郭群, 等. 增雨和氮添加对内蒙古草原土壤氮矿化潜力的影响[J]. 自然资源学报, 2017, 32(12): 2034-2042.
[13] [Yang Hao, Hu Zhongmin, Guo Qun, et al. Influences of precipitation increase and N addition on soil potential N mineralization in Inner Mongolia grassland[J]. Journal of Natural Resources, 2017, 32(12): 2034-2042.]
[14] 曹瑜, 游庆龙, 马茜蓉. 青藏高原中东部夏季极端降水年代际变化特征[J]. 气象科学, 2019, 39(4): 437-445.
[14] [Cao Yu, You Qinlong, Ma Qianrong. Interdecadal characteristics of the summer extreme precipitation in the central and eastern Tibetan Plateau[J]. Journal of the Meteorological Sciences, 2019, 39(4): 437-445.]
[15] 吴江琪. 植被退化对尕海湿草甸土壤理化性质和酶活性的影响[D]. 兰州: 甘肃农业大学, 2021.
[15] [Wu Jiangqi. Effects of Vegetation Degradation on Soil Physicochemical Properties and Enzyme Activities of Gahai Wet Meadow[D]. Lanzhou: Gansu Agricultural University, 2021.]
[16] 徐国荣, 马维伟, 宋良翠, 等. 植被不同退化状态下尕海湿地土壤氮含量及酶活性特征[J]. 生态学报, 2020, 40(24): 8917-8927.
[16] [Xu Guorong, Ma Weiwei, Song Liangcui, et al. Characteristics of soil nitrogen content and enzyme activity in Gahai Wetland under different vegetation degradation conditions[J]. Acta Ecologica Sinica, 2020, 40(24): 8917-8927.]
[17] Wu J Q, Wang H Y, Li G, et al. Vegetation degradation impacts soil nutrients and enzyme activities in wet meadow on the Qinghai-Tibet Plateau[J]. Scientific Reports, 2020, 10: 21271.
[18] 马瑞, 马维伟, 李广, 等. 尕海湿地不同植被退化阶段凋落物分解及其有机碳动态[J]. 水土保持研究, 2017, 24(6): 29-34.
[18] [Ma Rui, Ma Weiwei, Li Guang, et al. Litter decomposition and dynamics of organic carbon in degraded vegetation of Gahai Wetland[J]. Research of Soil and Water Conservation, 2017, 24(6): 29-34.]
[19] 马维伟, 孙文颖. 尕海湿地植被退化过程中有机碳及相关土壤酶活性变化特征[J]. 自然资源学报, 2020, 35(5): 1250-1260.
[19] [Ma Weiwei, Sun Wenyin. Changes of organic carbon and related soil enzyme activities during vegetation degradation in Gahai Wetland[J]. Journal of Natural Resources, 2020, 35(5): 1250-1260.]
[20] Fan J, Sun W, Zhao Y, et al. Trend analyses of extreme precipitation events in the Yarlung Zangbo River Basin, China using a high resolution precipitation product[J]. Sustainability, 2018, 10(5), doi: 10.3390/su10051396.
[21] Li L, Yang S, Wang Z, et al. Evidence of warming and wetting climate over the Qinghai-Tibet Plateau[J]. Arctic Antarctic & Alpine Research, 2010, 42(4): 449-457.
[22] Saha U K, Sonon L, Biswas B K. A comparison of diffusion-conductimetric and distillation-titration methods in analyzing ammonium-and nitrate-nitrogen in the KCl-extracts of Georgia soils[J]. Communications in Soil Science and Plant Analysis, 2018, 49 (1): 63-75.
[23] 胡艳玲, 韩士杰, 李雪峰, 等. 长白山原始林和次生林土壤有效氮含量对模拟氮沉降的响应[J]. 东北林业大学学报, 2009, 37(5): 36-38, 42.
[23] [Hu Yanlin, Han Shijie, Li Xuefeng, et al. Responses of soil available nitrogen of natural forest and secondary forest to simulated N deposition in Changbai Mountain[J]. Journal of Northeast Forestry University, 2009, 37(5): 36-38, 42.]
[24] Edwards K A, McCulloch J, Kershaw G P, et al. Soil microbial and nutrient dynamics in a wet Arctic sedge meadow in late winter and early spring[J]. Soil Biology & Biochemistry, 2006, 38(9): 2843-2851.
[25] Cregger M A, McDowell N G, Pangle R E, et al. The impact of precipitation change on nitrogen cycling in a semi-arid ecosystem[J]. Functional Ecology, 2015, 28(6): 1534-1544.
[26] Puri G, Ashman M R. Relationship between soil microbial biomass and gross N mineralization[J]. Soil Biology and Biochemistry, 1998, 30(2): 251-256.
[27] 宋良翠, 马维伟, 李广, 等. 水分对尕海湿地退化演替土壤氮矿化的影响[J]. 干旱区研究, 2022, 39(1): 165-175.
[27] [Song Liangcui, Ma Weiwei, Li Guang, et al. Effect of water on nitrogen mineralization in degraded succession of Gahai Wetland[J]. Arid Zone Research, 2022, 39(1): 165-175.]
[28] Zhou X Y, Chen L, Li Y, et al. Abiotic processes dominate soil organic matter mineralization: Investigating the regulatory gate hypothesis by inoculating a previously fumigated soil within creasing fresh soil inocula[J]. Geoderma, 2020, 373: 114400
[29] Liu Y T, Zhao S Q, Zhi Q, et al. Image grey value analysis for estimating the effect of microorganism inoculants on straws decomposition[J]. Computers and Electronics in Agriculture, 2016, 128: 120-126.
[30] 马芬, 马红亮, 邱泓, 等. 水分状况与不同形态氮添加对亚热带森林土壤氮素净转化速率及N2O排放的影响[J]. 应用生态学报, 2015, 26(2): 379-387.
[30] [Ma Fen, Ma Hongliang, Qiu Hong, et al. Effects of water levels and the additions of different nitrogen forms on soil net nitrogen transformation rate and N2O emission in subtropical forest soils[J]. Chinese Journal of Applied Ecology, 2015, 26(2): 379-387.]
[31] Gao J M, Dong L Y, Hu G, et al. Altitudinal effect of soil nitrogen transformation in a montane evergreen broadleaved forest in Ailao Mountains of Southwest China[J]. Chinese Journal of Ecology, 2011, 30(10): 2149-2154.
[32] Chapin F S, Vitousek P M, Van Cleve K. The nature of nutrient limitation in plant communities[J]. American Naturalist, 1986, 127(1): 48-58.
[33] 傅民杰, 王传宽, 王颖, 等. 四种温带森林土壤氮矿化与硝化时空格局[J]. 生态学报, 2009, 29(7): 3747-3758.
[33] [Fu Minjie, Wang Chuankuan, Wang Ying, et al. Temporal and spatial patterns of soil nitrogen mineralization and nitrification in four temperate forests[J]. Acta Ecologica Sinica, 2009, 29(7): 3747-3758.]
[34] 王常慧, 邢雪荣, 韩兴国. 温度和湿度对我国内蒙古羊草草原土壤净氮矿化的影响[J]. 生态学报, 2004, 24(11): 2472-2476.
[34] [Wang Changhui, Xing Xuerong, Han Xingguo. The effects of temperature and moisture on the soil net nitrogen mineralization in an Aneulolepidium chinensis grassland, Inner Mongolia, China[J]. Acta Ecologica Sinica, 2004, 24(11): 2472-2476.]
[35] Chapin III F S, Matson P A, Mooney H A. Principles of Terrestrial Ecosystem Ecology[R]. Berlin: Springer, 2011.
[36] Cregger M A, McDowell N G, Pangle R E, et al. The impact of precipitation change on nitrogen cycling in a semi-arid ecosystem[J]. Functional Ecology, 2015, 28(6): 1534-1544.
[37] 李国荣, 李希来, 陈文婷, 等. 降雨侵蚀对退化草地土壤养分含量的影响[J]. 水土保持研究, 2018, 25(2): 40-45.
[37] [Li Guorong, Li Xilai, Chen Wenting, et al. Influences of rain erosion on soil nutrient contents of the degraded grassland[J]. Research of Soil and Water Conservation, 2018, 25(2): 40-45.]
[38] 朱义族, 李雅颖, 韩继刚, 等. 水分条件变化对土壤微生物的影响及其响应机制研究进展[J]. 应用生态学报, 2019, 30(12): 4323-4332.
[38] [Zhu Yizu, Li Yaying, Han Jigang, et al. Effects of changes in water status on soil microbes and their response mechanism: A review[J]. Chinese Journal of Applied Ecology, 2019, 30(12): 4323-4332.]
[39] Pezeshki S R. Wetland plant responses to soil flooding[J]. Environmental and Experimental Botany, 2001, 46(3): 299-312.
[40] Jackson M B, Ram P C. Physiological and molecular basis of susceptibility and tolerance of rice plants to complete submergence[J]. Annals of Botany, 2003, 91(2): 227-241.
[41] 董云霞. 纳帕海湿地区土壤碳氮要素分异特征研究[D]. 昆明: 云南大学, 2011.
[41] [Dong Yunxia. Study on Variation of Carbon and Nitrogen Components of Soil in Napahai Wetland Reserve[D]. Kunming: Yunnan University, 2011.]
[42] 马维伟, 王辉, 李广, 等. 甘南尕海湿地退化过程中植被生物量变化及其季节动态[J]. 生态学报, 2017, 37(15): 5091-5101.
[42] [Ma Weiwei, Wang Hui, Li Guang, et al. Changes in plant biomass and its seasonal dynamics during degradation succession in the Gahai wetland[J]. Acta Ecologica Sinica, 2017, 37(15): 5091-5101.]
文章导航

/