植物生态

不同灌溉模式下胡杨断根处理根蘖繁殖特征

展开
  • 1.中国科学院新疆生态与地理研究所荒漠与绿洲生态国家重点实验室,新疆 乌鲁木齐 830011
    2.中国科学院大学,北京 100049
    3.石河子大学水利建筑工程学院,新疆 石河子 832003
王子康(1997-),女,硕士研究生,主要从事干旱区水文过程研究. E-mail: wangzikang97@163.com

收稿日期: 2021-11-02

  修回日期: 2022-01-14

  网络出版日期: 2022-09-26

基金资助

新疆水利科技专项资金项目(XSKJ-2022-10);中国科学院“西部青年学者”项目(2019-XBQNXZ-A-001);新疆天山青年计划(2019Q006);科技基础资源调查专项(2019FY100203)

Characteristics of Populus euphratica root under various irrigation modes

Expand
  • 1. State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences (CAS), Urumqi 830011, Xinjiang, China
    2. University of Chinese Academy of Sciences, Beijing 100049, China
    3. College of Water Conservancy and Construction Engineering, Shihezi University, Shihezi 832003, Xinjiang, China

Received date: 2021-11-02

  Revised date: 2022-01-14

  Online published: 2022-09-26

摘要

为巩固塔里木河下游输水成效,需要采用适宜的灌溉方式并结合断根萌蘖技术,促进胡杨林的更新复壮及下游的生态修复。以往的研究很少将不同灌溉模式与断根萌蘖生态修复效果相结合。因此,根据地形特点将研究区分为A1、A2、A3分区,对研究区开沟断根后,根据灌溉间隔、时长、水量的不同设置4种灌溉模式,具体为对照组(未进行灌溉的自然条件, F1);灌溉间隔11 d,每10 m断根沟的灌溉水量为6 m3,灌溉持续时长2 d(F2);灌溉间隔23 d,每10 m断根沟的灌溉水量为7 m3,灌溉持续时长3 d(F3);灌溉间隔33 d,每10 m断根沟的灌溉水量为8 m3,灌溉持续时长4 d(F4),调查在不同的灌溉处理下胡杨萌蘖更新情况。结果表明:(1) 远端根萌蘖能力优于近端根,A1、A2、A3分区内远端根的萌芽率分别为70.7%、77.1%、64.1%;胡杨萌蘖点距萌蘖根切面的距离集中在1~16 cm;萌蘖点与母树距离集中在5.5~7 m;萌蘖根分布深度集中在30~50 cm;萌蘖根直径集中在0.4~0.7 cm。(2) 根据胡杨根蘖苗的萌发数量,确定了适宜胡杨根萌蘖的土壤温度以及含水率区间分别为26.5~28.1 ℃、10.6%~13.1%;适宜胡杨根蘖的灌溉模式为灌溉间隔23 d,每10 m断根沟的灌溉水量为7 m3,灌溉时长3 d(F3)。研究结果可为塔里木河流域胡杨林更新复壮提供参考。

本文引用格式

王子康,焦阿永,凌红波,单钱娟,张广朋,王文琦 . 不同灌溉模式下胡杨断根处理根蘖繁殖特征[J]. 干旱区研究, 2022 , 39(4) : 1133 -1142 . DOI: 10.13866/j.azr.2022.04.14

Abstract

With the improvement of water resource management in Tarim River basin, the ecological environment in the lower reaches of Tarim River has been improved after ecological water diversion. Adopting appropriate irrigation methods combined with ecological restoration technology such as root cutting and sprouting is necessary to consolidate the effect of downstream water transfer, thereby promoting the regeneration and rejuvenation of Populus euphratica forest and the ecological protection and restoration of downstream. However, few studies have combined different irrigation patterns with ecological restoration effects of root cutting and sprouting. In this regard, this study was divided into A1, A2, and A3 in accordance with the terrain characteristics of the study area. Irrigation modes of different treatments were adopted after ditching and root cutting in the study area. Four irrigation modes were set in accordance with the water quantity of irrigation interval, and the specific control group was referred to as F1. The irrigation interval was 11 days; the irrigation water amount was 6 m3 every 10 m, and the irrigation duration was 2 days (F2). The irrigation interval was 23 days; the irrigation water amount was 7 m3 every 10 m, and the irrigation duration was 3 days (F3). In investigating the sprout renewal situation of Populus euphratica under different irrigation treatments, the irrigation interval was 33 days; the irrigation water amount was 8 m3 every 10 m, and the irrigation duration was 4 days (F4). Results showed that the germination ability of distal roots was better than that of proximal roots, and the germination rate of distal roots in A1, A2, and A3 zones was 70.7%, 77.1%, and 64.1%, respectively. The distance between the sprout point and sprout root section of Populus euphratica was concentrated in 1-16 cm. In addition, the distance between the root sprout seedling and parent tree was 5.5-7 m. The distribution depth of the sprout root was concentrated in 30-50 cm. The diameter of the sprout root was concentrated in 0.4-0.7 cm. Based on the germination number of the root and tillering seedlings of Populus euphratica, the optimum soil temperature and water content were determined to be 26.5-28.1 ℃ and 10.6%-13.1%, respectively. The suitable irrigation mode for Populus euphratica root cutting ditch was 23-day interval, and the irrigation water amount was 7 m3 per 10 m root ditch. Moreover, the irrigation duration was 3 days (F3). The results can provide reference for the regeneration and rejuvenation of Populus euphratica in Tarim river basin.

参考文献

[1] 王根绪, 程国栋. 干旱荒漠绿洲景观空间格局及其受水资源条件的影响分析[J]. 生态学报, 2000, 20(3): 363-368.
[1] [Wang Genxu, Cheng Guodong. The spatial pattern and influence caused by water resources in arid desert oases[J]. Acta Ecologica Sinica, 2000, 20(3): 363-368.]
[2] 孔子洁, 邓铭江, 凌红波, 等. 塔里木河下游河道断流区生态安全评估与生态恢复对策[J]. 干旱区研究, 2021, 38(4): 1128-1139.
[2] [Kong Zijie, Deng Mingjiang, Ling Hongbo, et al. Ecological security assessment and ecological restoration countermeasures in the dry-up area of the lower Tarim River[J]. Arid Zone Research, 2021, 38(4): 1128-1139.]
[3] 李丽君, 张小清, 陈长清, 等. 近20 a塔里木河下游输水对生态环境的影响[J]. 干旱区地理, 2018, 41(2): 238-247.
[3] [Li Lijun, Zhang Xiaoqing, Chen Changqing, et al. Ecological effects of water conveyance on the lower reaches of Tarim River in recent twenty years[J]. Arid Land Geography, 2018, 41(2): 238-247.]
[4] 黄粤, 包安明, 王士飞, 等. 间歇性输水影响下的2001—2011年塔里木河下游生态环境变化[J]. 地理学报, 2013, 68(9): 1251-1262.
[4] [Huang Yue, Bao Anming, Wang Shifei, et al. Eco-environmental change in the lower Tarim River under the influence of intermittent water transport[J]. Acta Geographical Sinica, 2013, 68(9): 1251-1262.]
[5] Chen Y, Li W, Xu C, et al. Desert riparian vegetation and groundwater in the lower reaches of the Tarim River basin[J]. Environmental Earth Sciences, 2015, 73(2): 547-558.
[6] 赵万羽, 陈亚宁, 周洪华, 等. 塔里木河下游生态输水后衰败胡杨林更新能力与条件分析[J]. 中国沙漠, 2009, 29(1): 108-113.
[6] [Zhao Wanyu, Chen Yaning, Zhou Honghua, et al. Reproductive ability and relative environment factors of degraded Populus euphratica forest in ecological water delivery project at lower reaches of Tarim River[J]. Journal of Desert Research, 2009, 29(1): 108-113.]
[7] 李梦怡, 邓铭江, 凌红波, 等. 塔里木河下游水生态安全评价及驱动要素分析[J]. 干旱区研究, 2021, 38(1): 39-47.
[7] [Li Mengyi, Deng Mingjiang, Ling Hongbo, et al. Evaluation of ecological water security and analysis of driving factors in the lower Tarim River, China[J]. Arid Zone Research, 2021, 38(1): 39-47.]
[8] 邓铭江, 杨鹏年, 周海鹰, 等. 塔里木河下游水量转化特征及其生态输水策略[J] 干旱区研究, 2017, 34(4): 717-726.
[8] [Deng Mingjiang, Yang Pengnian, Zhou Haiying, et al. Water conversion and strategy of ecological water conveyance in the lower reaches of the Tarim River[J]. Arid Zone Research, 2017, 34(4): 717-726.]
[9] Gutierrez J R, Arancio G, Jaksic F M. Variation in vegetation and seed bank in a Chilean semi-arid community affected by ENSO 1997[J]. Journal of Vegetation Science, 2000, 11(5): 641-648.
[10] 赵文智, 常学礼, 李秋艳. 人工调水对额济纳胡杨荒漠河岸林繁殖的影响[J]. 生态学报, 2005, 25(8): 1987-1993.
[10] [Zhao Wenzhi, Chang Xueli, Li Qiuyan. Artificial water diversion effects of Heihe River on Populus euphratica Oliv. desert riparian forests in Ejina[J]. Acta Ecologica Sinica, 2005, 25(8): 1987-1993.]
[11] 叶子奇, 邓如军, 王雨辰, 等. 胡杨繁殖根系分枝特征及其与土壤因子的关联性[J]. 北京林业大学学报, 2018, 40(2): 31-39.
[11] [Ye Ziqi, Deng Rujun, Wang Yuchen, et al. Branching patterns of clonal root of Populus euphratica and its associations with soil factors[J]. Journal of Beijing Forestry University, 2018, 40(2): 31-39.]
[12] 黄晶晶, 井家林, 曹德昌, 等. 不同林龄胡杨克隆繁殖根系分布特征及其构型[J]. 生态学报, 2013, 33(14): 4331-4342.
[12] [Huang Jingjing, Jing Jialin, Cao Dechang, et al. Cloning root system distribution and architecture of different forest age Populus euphratica in Ejina Oasis[J]. Acta Ecologica Sinica, 2013, 33(14): 4331-4342.]
[13] 朱玉伟, 桑巴叶, 陈启民, 等. 和田河流域胡杨林更新复壮技术[J]. 南方农业学报, 2012, 43(10): 1544-1548.
[13] [Zhu Yuwei, Sang Baye, Chen Qimin, et al. Rejuvenation techniques of P. euphratica forest in Hetian River Basin[J]. Journal of Southern Agriculture, 2012, 43(10): 1544-1548.]
[14] 郑亚琼, 张肖, 梁继业, 等. 濒危物种胡杨和灰叶胡杨的克隆生长特征[J]. 生态学报, 2016, 36(5): 1331-1341.
[14] [Zheng Yaqiong, Zhang Xiao, Liang Jiye, et al. Clonal growth characteristics of the endangered species Populus euphratica Oliv. and Populus pruinosa schrenk[J]. Acta Ecologica Sinica, 2016, 36(5): 1331-1341.]
[15] 张昊, 李俊清, 李景文, 等. 额济纳绿洲胡杨种群繁殖物候节律特征的研究[J]. 内蒙古农业大学学报(自然科学版), 2007, 28(2): 60-66.
[15] [Zhang Hao, Li Junqing, Li Jingwen, et al. The reproductive phenological rhythm characteristice of Populus euphratica Oliv. population in the egina oasis of Inner Momgolia[J]. Journal of Inner Mongolia Agricultural University (Natural Science Edition), 2007, 28(2): 60-66.]
[16] 王雨辰, 王文娟, 钟悦鸣, 等. 胡杨繁殖根扩展行为及其影响因子研究[J]. 植物科学学报, 2020, 38(3): 410-417.
[16] Wang Yuchen, Wang Wenjuan, Zhong Yueming, et al. Study on the foraging behavior of clonal roots and its influencing factors in Populus euphratica Oliv[J]. Plant Science Journal, 2020, 38(3): 410-417.]
[17] Klimesova J, Pokorna A, Klimes L. Establishment growth and bud-bank formation in Epilobium angustifolium: The effects of nutrient availability, plant injury, and environmental heterogeneity[J]. Botany-Botanique, 2009, 87(2): 195-201.
[18] Bartuskova A, Klimesova J. Reiteration in the short lived root-sprouting herb Rorippa palustris: Does the origin of buds matter?[J]. Botany, 2010, 88(7): 630-638.
[19] 武逢平, 李俊清, 李景文, 等. 胡杨(Populus euphratica)在额济纳绿洲三种生境内的根蘖繁殖特性[J]. 生态学报, 2008, 28(10): 4703-4709.
[19] [Wu Fengping, Li Junqing, Li Jingwen, et al. The charactertics of root suckers of Populus euphratica Oliv. in three habitats of Ejina Oasis[J]. Acta Ecologica Sinica, 2008, 28(10): 4703-4709.]
[20] 李志军, 刘建平, 于军, 等. 胡杨、灰叶胡杨生物生态学特性调查[J]. 西北植物学报, 2003, 23(7): 236-240.
[20] [Li Zhijun, Liu Jianping, Yu Jun, et al. Investigation on the characteristics of biology and ecology of Populus euphratica and Populus pruinosa[J]. Acta Botanica Boreali-Occidentalia Sinica, 2003, 23(7): 236-240.]
[21] 曹德昌, 李景文, 陈维强, 等. 额济纳绿洲不同林隙胡杨根蘖的发生特征[J]. 生态学报, 2009, 29(4): 1954-1961.
[21] [Cao Dechang, Li Jingwen, Chen Weiqiang, et al. Development and growth of root suckers of Populus euphratica in different forest gaps in Ejina Oasis[J]. Acta Ecologica Sinica, 2009, 29(4): 1954-1961.]
[22] 孙洪祥, 姚云峰. 额济纳绿洲胡杨林更新复壮技术研究[J]. 干旱区资源与环境, 2000, 14(增刊1): 69-73.
[22] [Sun Hongxiang, Yao Yunfeng. Study on technology of diversiform-leaved poplar forest regeneration and restoration of Ejina Oasis[J]. Journal of Arid Land Resources and Environment, 2000, 14(Suppl. 1): 69-73.]
[23] Ling H B, Zhang P, Xu H L, et al. Determining the ecological water allocation in a hyper-arid catchment with increasing competition for water resources[J]. Global and Planetary Change, 2016, 145: 143-152.
[24] 李均力, 肖昊, 沈占锋, 等. 2013—2018年塔里木河下游植被动态变化及其对生态输水的响应[J]. 干旱区研究, 2020, 37(4): 985-992.
[24] [Li Junli, Xiao Hao, Shen Zhanfeng, et al. Vegetation changes during the 2013-2018 period and its response to ecological water transport in the lower reaches of the Tarim River[J]. Arid Zone Research, 2020, 37(4): 985-992.]
[25] Ling H B, Guo B, Zhang G P, et al. Evaluation of the ecological protective effect of the “large basin” comprehensive management system in the Tarim River basin, China[J]. Science of the Total Environment, 2019, 650: 1696-1706.
[26] 张文霞, 刘普幸, 冯青荣, 等. 1960—2015年中国绿洲胡杨生长季对全球变暖的时空响应及原因[J]. 地理学报, 2017, 72(7): 1151-1162.
[26] [Zhang Wenxia, Liu Puxing, Feng Qingrong, et al. Spatial and temporal response and its causes of the growing season of Populus euphratica to global warming in China’s oases during 1960-2015[J]. Acta Geographica Sinica, 2017, 72(7): 1151-1162.]
[27] 田永祯, 司建华, 程业森, 等. 荒漠河谷胡杨残林复壮更新试验研究[J]. 干旱区资源与环境, 2009, 23(9): 155-159.
[27] [Tian Yongzhen, Si Jianhua, Cheng Yesen, et al. Experimental study on rejuvenation and regeneration of residual Populus euphratica forest in desert valley[J]. Journal of Arid Land Resources and Environment, 2009, 23(9): 155-159.]
[28] 韩建华, 周芳, 张丽霞, 等. 构筑北方生态安全屏障——四子王旗胡杨林自然繁殖及人工更新探讨[J]. 林业科技情报, 2021, 53(2): 19-22.
[28] [Han Jianhua, Zhou Fang, Zhang Lixia, et al. Construct the ecological security barrier in the north-discussion on natura reproduction and artificial regeneration of Populus euphratica in Siziwang Banner[J]. Forestry Science and Technology Information Linye Keji QingBao, 2021, 53(2): 19-22.]
[29] 裴宏伟, 张红娟, 李雅丽, 等. 中国北方城市草坪蒸散特征及影响因素研究——以河北张家口市某早熟禾草坪为例[J]. 节水灌溉, 2021(11): 1-14.
[29] [Pei Hongwei, Zhang Hongjuan, Li Yali, et al. Characteristics and drivers of turf evapotranspiration in northern China: A case study of turf (Poa pratensis) in Zhangjiakou City, Hebei Province[J]. Water Saving Irrigation, 2021(11): 1-14.]
[30] 冯起, 司建华, 常宗强, 等. 极端干旱区胡杨根系分布对土壤水分的响应[J] 干旱区资源与环境, 2009, 23(11): 186-190.
[30] [Feng Qi, Si Jianhua, Chang Zongqiang, et al. Response of root distribution of Populus euphratica Oliv. to soil moisture content in extreme arid region[J]. Journal of Arid Land Resources and Environment, 2009, 23(11): 186-190.]
[31] 冯起, 司建华, 李建林, 等. 胡杨根系分布特征与根系吸水模型建立[J] 地球科学进展, 2008, 23(7): 765-772.
[31] [Feng Qi, Si Jianhua, Li Jianlin, et al. Feature of root distribution of Populus euphratica and its water uptake model in extreme arid region[J]. Advances in Earth Science, 2008, 23(7): 765-772.]
[32] 朱雅娟, 董鸣, 黄振英. 种子萌发和幼苗生长对沙丘环境的适应机制[J]. 应用生态学报, 2006, 17(1): 137-142.
[32] [Zhu Yajuan, Dong Ming, Huang Zhenying. Adaptation strategies of seed germination and seedling growth to sand dune environment[J]. Chinese Journal of Applied Ecology, 2006, 17(1): 137-142.]
[33] 李鹏, 赵忠, 李占斌, 等. 植被根系与生态环境相互作用机制研究进展[J]. 西北林学院学报, 2002, 17(2): 26-32.
[33] [Li Peng, Zhao Zhong, Li Zhanbin, et al. Advances on the interactional mechanism between root system and eco-enviroment[J]. Journal of Northwest Forestry University, 2002, 17(2): 26-32.]
[34] 李新荣, 马凤云, 龙立群, 等. 沙坡头地区固沙植被土壤水分动态研究[J]. 中国沙漠, 2001, 21(3) : 3-8.
[34] [Li Xinrong, Ma Fengyun, Long Liqun, et al. Soil water dynamics under sand-fixing vegetation in shapotou area[J]. Journal of Desert Research, 2001, 21(3): 3-8.]
[35] 高生峰, 叶茂. 塔里木河上、中游极端干旱区淹灌对胡杨(Populus euphratica)长势的影响[J]. 生态科学, 2020, 39(2): 50-57.
[35] [Gao Shengfeng, Ye Mao. Effect of flood on growth of Populus euphratica in extreme arid region in the upper and middle reaches of Tarim River for example[J]. Ecological Science, 2020, 39(2): 50-57.]
文章导航

/