风沙防治系统,平行智能,计算实验,植物措施,三维地理信息可视化 ," /> 风沙防治系统,平行智能,计算实验,植物措施,三维地理信息可视化 ,"/> 平行智能风沙防治系统构架与功能——以植物措施为例

干旱区研究 ›› 2019, Vol. 36 ›› Issue (6): 1576-1583.

• 陆面过程 • 上一篇    下一篇

平行智能风沙防治系统构架与功能——以植物措施为例

常方乐12,康孟珍12,王秀娟12,王永东3,雷加强3,王飞跃14   

  1. 1.中国科学院自动化研究所复杂系统管理与控制国家重点实验室,北京100190; 2.青岛智能产业技术研究院智慧农业研究所,山东 青岛266109; 3.中国科学院新疆生态与地理研究所国家荒漠—绿洲生态建设工程技术研究中心,新疆 乌鲁木齐830011; 4.中国科学院自动化研究所北京智能技术工程研究中心,北京100190
  • 收稿日期:2019-05-27 修回日期:2019-09-03 出版日期:2019-11-15 发布日期:2019-11-15
  • 通讯作者: 康孟珍; 雷加强
  • 作者简介:常方乐(1988-),女,博士后,主要从事农业与生物工程,系统工程,以及环境工程等研究. E-mail: fangle.chang@ia.ac.cn
  • 基金资助:
    中国科学院战略性先导科技专项(A类)(XDA20030102);国家自然科学基金项目(31700315, 61533019)资助

Framework and Function of Aeolian Sand Parallel Prevention and Control: Application of Artificial Intelligence Technology in Sand Prevention and Control

CHANG Fang-le1, 2, KANG Meng-zhen1, 2, WANG Xiu-juan1, 2, WANG Yong-dong3, LEI Jia-qiang3, WANG Fei-yue1, 4   

  1. 1. State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China;
    2. Innovation Center for Parallel Agriculture, Qingdao Academy of Intelligent Industries, Qingdao 266109, Shandong, China;
    3. Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China;
    4. Beijing Center of Intelligent Technology Engineering Research, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China

  • Received:2019-05-27 Revised:2019-09-03 Online:2019-11-15 Published:2019-11-15
  • Contact: mengzhen.kang@ia.ac.cn;leijq@ms.xjb.ac.cn

摘要:

风沙活动复杂多变,使得风沙危害治理周期长、难预测、难评估。目前的风沙防治模拟系统主要基于物理建模框架,由于在受控环境中构建,预测结果容易偏离实际系统。本文从风沙运动物理原理着手,结合人工智能技术构建知识和数据共同驱动风沙防治模型。针对系统的复杂性,提出了一种借鉴实际工程与虚拟实验相互学习的基于ACP(人工社会+计算实验+平行执行)平行系统理论的风沙平行防治系统,预测不同风沙防治行为对风沙活动以及防治效果的影响。其中防治行为为植被种植情况,防治效果通过地表荒漠化程度表达。同时对风沙防治效果进行三维可视化展示,为风沙防治工程项目提供实施前、实施期间的决策支持。

关键词: 风沙防治系统')">

风沙防治系统, 平行智能, 计算实验, 植物措施, 三维地理信息可视化

Abstract: Aeolian sand is complex, changeable and hard to predict and assess, and its prevention and control is time-consuming. Currently, the simulation system of aeolian sand prevention and control is mainly based on the physical-process modeling. The model prediction results are generally far away from the real results due to the low-accurate measured result of aeolian sand activities. In this paper, a new system based on the ACP (Artificial Societies + Computational experiments + Parallel systems) approach was introduced. Based on the physical principle of sand movement, the system could be used to predict the different windproof effects of aeolian sand by applying the artificial intelligence for different managements (such as vegetation planting). The system could provide the decision support for the prevention and control projects of aeolian sand hazards through developing the model driven by the knowledge and data to simulate and predict the performance of windproof of aeolian sand and building the three-dimensional sense visualization.

Key words: windproof system, aeolian sand, parallel intelligence, computational experiment, vegetation planting, three-dimensional geographic scene visualization