Spatiotemporal variation of albedo of four representative glaciers in the Heihe River Basin based on multi-source data

Expand
  • (College of Geography and Environment, Shandong Normal University, Jinan 250300, Shandong, China)

Received date: 2020-01-03

  Revised date: 2020-03-23

  Online published: 2021-01-24

Abstract

Glacier albedo is a critical parameter that controls the process of radiation budget, the fluctuation of which directly affects the change in glacier energy-mass balance. By remote sensing, studies on the characteristics of glacier albedo and its spatiotemporal distribution can be taken as an important reference for estimating glacier melting and downstream river runoff. In this study, albedo dataset retrieved from Landsat TM/ETM+ images and MOD10A1 daily albedo product were used as the main data sources, and Landsat TM/ETM+ images and MOD10A1 data’error were analyzed by field measurements. Then, the spatiotemporal variations of albedo were investigated on four representative glaciers in Heihe River Basin of MOD10A1 from 2000 to 2018. The results showed that there was a certain bias between albedo value derived from MOD10A1 products and ground measured, but the time series was similar; there is a difference in inversion results between MOD10A1 and Landsat TM/ETM+, suggesting a good applicability of glacier albedo in Heihe River Basin. On the interannual scale, the albedo of four glaciers was decreasing. Among the spatial scale, the annual average albedo of Bayi glacier was the highest, followed by Yanglonghe glacier No. 5, Qiyi glacier, and Shiyi glacier; the average albedo of Yanglonghe glacier No. 5 was the highest in the ablation season, followed by the Qiyi glacier, Bayi glacier, and Shiyi glacier.

Cite this article

WANG Jun-yao, HUAI Bao-juan, WANG Ye-tang, SUN Wei-jun, ZHANG Wu-ying . Spatiotemporal variation of albedo of four representative glaciers in the Heihe River Basin based on multi-source data[J]. Arid Zone Research, 2020 , 37(6) : 1396 -1405 . DOI: 10.13866/j.azr.2020.06.04

References

[1] Malmros J K, Mernild S H, Wilson R, et al. Snow cover and snowalbedo changes in the central Andes of Chile and Argentina fromdaily MODIS observations (2000-2016)[J]. Remote Sensing of En⁃vironment, 2018, 209: 240-252.[2] 毛瑞娟, 吴红波, 贺建桥, 等. 昆仑山木孜塔格冰川反照率变化特征及其与粉尘的关系[J]. 冰川冻土, 2013, 35(5): 1133-1142.[Mao Ruijuan, Wu Hongbo, He Jianqiao, et al. Spatiotemporal vari⁃ation of albedo of Muztagh Glacier in the Kunlun Mountains andits relation to dust[J]. Journal of Glaciology and Geocryology,2013, 35(5): 1133-1142. ] [3] 李开明, 陈世峰, 康玲芬, 等. 中国大陆型冰川和海洋型冰川变化比较分析——以天山乌鲁木齐河源1号冰川和玉龙雪山白水河1号冰川为例[J]. 干旱区研究, 2018, 35(1): 12-19. [Li Kai⁃ming, Chen Shifeng, Kang Lingfen, et al. Variation of continentalglacier and temperate glacier in China: A case study of GlacierNo. 1 at the headwaters of the Urumqi River and Baishui GlacierNo. 1[J]. Arid Zone Research, 2018, 35(1): 12-19. ] [4] Davaze L, Rabatel A, Yves A, et al. Monitoring glacier albedo as aproxy to derive summer and annual surface mass balances from opti⁃cal remote-sensing data[J]. The Cryosphere, 2018, 12(1): 271-286.[5] Stroece J C, Box J E, Haran T. Evaluation of the MODIS(MOD10A1) daily snow albedo product over the Greenland icesheet[J]. Remote Sensing of Environment, 2006, 105(2): 155-171.[6] Tekeli A E, Şensoy A, Şorman A, et al. Accuracy assessment ofMODIS daily snow albedo retrievals with in situ measurements inKarasu basin, Turkey[J]. Hydrological Processes: An InternationalJournal, 2006, 20(4): 705-721.[7] 王杰, 何晓波, 叶柏生, 等. 唐古拉山冬克玛底冰川反照率变化特征研究[J]. 冰川冻土, 2012, 34(1): 21-28. [Wang Jie, He Xiao⁃bo, Ye Baisheng, et al. Variations of albedo on the DongkemadiGlacier, Tanggula Range[J]. Journal of Glaciology and Geocryolo⁃gy, 2012, 34(1): 21-28. ] [8] 徐田利, 邬光剑, 张学磊, 等. 基于MODIS数据的青藏高原冰川反照率时空分布及变化研究[J]. 冰川冻土, 2018, 40(5): 875-883. [Xu Tianli, Wu Guangjian, Zhang Xuelei, et al. Albedo onglaciers in the Tibetan Plateau based on MODIS data: Spatiotem⁃poral distribution and variation[J]. Journal of Glaciology and Geoc⁃rylogy, 2018, 40(5): 875-883. ] [9] Zhang Z, Jiang L, Liu L, et al. Annual glacier-wide mass balance(2000- 2016) of the interior Tibetan Plateau reconstructed fromMODIS albedo products[J]. Remote Sensing, 2018, 10(7): 1031-1052.[10] 郭力仁, 蒙吉军, 李枫. 基于空间异质性的黑河中游水资源脆弱性研究[J]. 干旱区资源与环境, 2018, 32(9): 175-182. [Guo Li⁃ren, Meng Jijun, Li Feng. Water resources vulnerability in the mid⁃dle reaches of Heihe River based on spatial heterogeneity[J]. Jour⁃nal of Arid Land Resources and Environment, 2018, 32(9): 175-182. ] [11] 怀保娟, 李忠勤, 孙美平, 等. 近50年黑河流域的冰川变化遥感分析[J]. 地理学报, 2014, 69(3): 365-377. [Huai Baojuan, LiZhongqin, Sun Meiping, et al. RS analysis of glaciers change inthe Heihe River Basin in the last 50 years[J]. Acta Geographica Si⁃nica, 2014, 69(3): 365-377. ] [12] 刘时银, 姚晓军, 郭万钦, 等. 基于第二次冰川编目的中国冰川现状[J]. 地理学报, 2015, 70(1): 3-16. [Liu Shiyin, Yao Xiaojun,Guo Wanqin, et al. The contemporary glaciers in China based onthe Second Chinese Glacier Inventory[J]. Journal of GeographicalSciences, 2015, 70(1): 3-16. ] [13] Guo W, Liu S, Xu J, et al. The second Chinese glacier inventory:Data, methods and results[J]. Journal of Glaciology, 2015, 61(226): 357-372.[14] Sun M, Liu S, Yao X, et al. Glacier changes in the past half-centu⁃ry: Based on the revised First and Second Chinese Glacier Invento⁃ry[J]. Journal of Geographical Sciences, 2018, 28(2): 206-220.[15] 毛瑞娟, 蒋熹, 郭忠明, 等. 基于TM/ETM+影像反演祁连山七一冰川反照率精度比较研究[J]. 冰川冻土, 2013, 35(2): 301-309.[Mao Ruijuan, Jiang Xi, Guo Zhongming, et al. Study of the inver⁃sion precision of albedo on the Qiyi Glacier in the Qilian Moun⁃tain based on TM/ETM+ image[J]. Journal of Glaciology and Geoc⁃ryology, 2013, 35(2): 301-309. ] [16] Shangguan D, Liu S Ding Y, et al. Changes in the elevation and ex⁃tent of two glaciers along the Yanglonghe river, Qilian Shan, China[J]. Journal of Glaciology, 2010, 56(196): 309-317.[17] 王宁练, 蒲健辰. 祁连山八一冰川雷达测厚与冰储量分析[J]. 冰川冻土, 2009, 31(3): 431-435. [Wang Ninglian, Pu Jianchen. Icethickness, sounded by ground penetrating radar, on the Bayi Gla⁃cier in the Qilian Mountains, China[J]. Journal of Glaciology andGeocryology, 2009, 31(3): 431-435. ] [18] 卿文武, 刘俊峰, 杨钰泉, 等. 基于气温的物质平衡模型的参数不确定性分析——以祁连山十一冰川为例[J]. 地球科学进展,2016, 31(9): 937-945. [Qing Wenwu, Liu Junfeng, Yang Yuquan,et al. Uncertainty analysis of the parameters of the temperature-in⁃dex method: A case study of Shiyi Glacier in Qilian Mountains[J].Advances in Earth Science, 2016, 31(9): 937-945. ] [19] 王杰. 中国西部典型冰川反照率变化特征与参数化模拟[D]. 北京:中国科学院大学, 2012. [Wang Jie. The Spatiotemporal Varia⁃tions and Parameterizations of Albedo on Nine Representative Gla⁃ciers in Western China[D]. Beijing: University of Chinese Acade⁃my of Science, 2012. ] [20] 吕利利, 颉耀文, 董龙龙. 基于不同地形校正模型的影像反射率对比分析[J]. 遥感技术与应用, 2017, 32(4): 751-759. [Lyu Lili,Xie Yaowen, Dong Longlong. The comparison of reflectance basedon different terrain correction[J]. Remote Sensing Technology andApplication, 2017, 32(4): 751-759. ] [21] Soenen S A, Peddle D R, Coburn C A. SCS+C: A modified suncanopy-sensor topographic correction in forested terrain[J]. IEEETransactions on Geoscience and Remote Sensing, 2005, 43(9):2148-2159.[22] 钟耀武, 刘良云, 王纪华, 等. SCS+C地形辐射校正模型的应用分析研究[J]. 国土资源遥感, 2006, 70(4): 14-18. [Zhong Yaowu,Liu Liangyun, Wang Jihua, et al. The appllication of SCS+C meth⁃ods for topographic radiation correction[J]. Remote Sensing forLand and Resources, 2006, 70(4): 14-18. ] [23] 王介民, 高峰. 关于地表反照率遥感反演的几个问题[J]. 遥感技术与应用, 2004, 19(5): 295-300. [Wang Jiemin, Gao Feng, Dis⁃cussion on the problems on land surface albedo retrieval by re⁃mote sensing data[J]. Remote Sensing Technology and Applica⁃tion, 2004, 19(5): 295-300. ] [24] Roy D P, Zhang Hankun, Ju Junchang, et al. A general method tonormalize Landsat reflectance data to nadir BRDF adjusted reflec⁃tance[J]. Remote Sensing of Environment, 2016, 176: 255-271.[25] Liang S. Narrowband to broadband conversions of land surface al⁃bedo I: Algorithms[J]. Remote Sensing of Environment, 2001, 76(2): 213-238.[26] 潘海珠, 王建, 李弘毅. 祁连山区MODIS积雪反照率产品的精度验证及云下积雪反照率估算研究[J]. 冰川冻土, 2015, 37(1):49-57. [Pan Haizhu, Wang Jian, Li Hongyi. Accuracy validationof the MODIS snow albedo products and estimate of the snow albe⁃do under cloud over the Qilian Mountains[J]. Journal of Glaciologyand Geocryology, 2015, 37(1): 49-57. ] [27] Liang S, Fang H, Chen M, et al. Validating MODIS land surface re⁃flectance and albedo products: methods and preliminary results[J].Remote Sensing of Environment, 2002, 83(1-2): 149-162.[28] 王坤, 井哲帆, 吴玉伟, 等. 祁连山七一冰川表面运动特征最新观测研究[J]. 冰川冻土, 2014, 36(3): 537-545. [Wang Kun, JingZhefan, Wu Yuwei, et al. Latest survey and study of surface flowfeatures of the Qiyi Glacier in the Qilian Mountains[J]. Journal ofGlaciology and Geocryology, 2014, 36(3): 537-545. ] [29] 蒋熹. 冰雪反照率研究进展[J]. 冰川冻土, 2006, 28(5): 728-738. [Jiang Xi. Progress in the research of snow and ice albedo[J].Journal of Glaciology and Geocryology, 2006, 28(5): 728-738. ] [30] 张一平, 李佑荣, 王进欣, 等. 低纬高原城市冬季南北朝向室内温湿特征的初步分析[J]. 热带气象学报, 2001, 17(3): 265-272.[Zhang Yiping, Li Yourong, Wang Jinxin, et al. The characteristicsof indoor air temperature and humidity of south and north side ofcity buildings in winter on low-latitude plateau[J]. Journal of Trop⁃ical Meteorology, 2001, 17(3): 265-272. ] [31] Greuell W, Knap W H, Smeets P C. Elevational changes in meteo⁃rological variables along a midlatitude glacier during summer[J].Journal of Geophysical Research: Atmospheres, 1997, 102(D22):25941-25954.[32] 周石硚, 康世昌, 高坛光, 等. 纳木错流域扎当冰川径流对气温和降水形态变化的响应[J]. 科学通报, 2010, 55(18): 1781-1788. [Zhou Shiqiao, Kang Shichang, Gao Tanguang, et al. Re⁃sponse of Zhadang Glacier runoff in Nam Co Basin, Tibet, tochanges in air temperature and precipitation form[J]. Chinese Sci⁃ence Bulletin, 2010, 55(18): 1781-1788. ] [33] 蒋熹, 王宁练, 蒲健辰, 等. 夏季消融期祁连山“七一”冰川反照率初步研究[J]. 冰川冻土, 2008, 30(5): 752-760. [Jiang Xi,Wang Ninglian, Pu Jianchen, et al. The albedo on the Qiyi Glacierin Qilian Mountains during the ablation period[J]. Journal of Glaci⁃ology and Geocryology, 2008, 30(5): 752-760. ]
Outlines

/