Vegetation changes during the 2013-2018 period and its response to ecological water transport in the lower reaches of the Tarim River

Expand
  • (1. State Key Laboratory of Desert and Oasis Ecology, Institute of Xinjiang ecology and geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China; 2. Key Laboratory of GIS & RS Application Xinjiang Uygur Autonomous Region, Urumqi 830011, Xinjiang, China; 3. University of Chinese Academy of Sciences, Beijing 100049, China; 4. Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, China)

Received date: 2019-11-18

  Revised date: 2020-03-18

  Online published: 2020-10-18

Abstract

Desert riparian vegetation plays a significant role in maintaining ecological stability in extremely arid regions. Understanding the response of desert riparian vegetation to ecological water transport in the arid areas and its changing process is crucial for the formulation of ecological conservation and restoration and water transport policy development. The desert riparian vegetation in the lower reaches of the Tarim River was selected as the research objective. We used multi-source data, including Landsat8 OLI and Sentinel-2A, to construct the vegetation cover data and typical monitoring section vegetation index time-series data. Besides, the temporal and spatial variation characteristics of vegetation in the desert riparian zone from 2013 to 2018 were analyzed. Combined with groundwater level data, we analyzed the response of desert riparian vegetation and ecological water transfer projects. The results showed that the different types of vegetation presented different spatial and temporal changing characteristics after the ecological water transport. The area and spatial distribution of new shrubs were significantly higher than those of other vegetation types. The new Populus euphratica is mainly distributed within 0-1 km and 4.5-6 km of the river channel, and the new shrubs are mainly distributed within 1-4 km of the river channel. The new herbal plants are mainly distributed within 2.5 km of the river channel. Different types of vegetation are affected by ecological water transport modes and monitoring section spaces. The influence of location shows different responses to ecological water transport. At the same time, groundwater levels downstream of the Tarim River is generally uplifted, and vegetation growth is generally improved with the development of ecological water transfer projects.

Cite this article

LI Jun-li, XIAO Hao, SHEN Zhan-Feng, BAI Jie . Vegetation changes during the 2013-2018 period and its response to ecological water transport in the lower reaches of the Tarim River[J]. Arid Zone Research, 2020 , 37(4) : 985 -992 . DOI: 10.13866/j.azr.2020.04.19

References

[1] 王希义, 徐海量, 凌红波, 等. 生态输水对塔里木河下游植被恢 复价值的影响[J]. 干旱地区农业研究, 2017, 35(4):166-172. [Wang Xiyi, Xu Hailiang, Ling Hongbo, et al. Effects of ecological water conveyance on recovery value of vegetation in the lower reaches of Tarim River[J]. Agricultural Research in the Arid Areas, 2017, 35(4):166-172.] [2] 陈亚宁, 李卫红, 陈亚鹏, 等. 科技支撑新疆塔里木河流域生态 修复及可持续管理[J]. 干旱区地理, 2018, 41(5):3-9[. Chen Yaning, Li Weihong, Chen Yapeng, et al. Science in supporting the ecological restoration and sustainable development of the Tarim River Basin[J]. Arid Land Geography, 2018, 41(5):3-9.] [3] 刘娇, 黄显峰, 方国华, 等. 基于GIS缓冲区功能的塔里木河中 游植被指数时空变化分析[J]. 干旱区研究, 2018, 35(1): 171-180[. Liu Jiao, Huang Xianfeng, Fang Guohua, et al. Spatiotemporal variation of NDVI in the middle reaches of the Tarim River based on GIS buffer function[J]. Arid Zone Research, 2018, 35(1):171-180.] [4] 赵军, 杨建霞, 朱国锋. 生态输水对青土湖周边区域植被覆盖 度的影响[J]. 干旱区研究, 2018, 35(6):1251-1261[. Zhao Jun, Yang Jianxia, Zhu Guofeng. Effect of ecological water conveyance on vegetation coverage in surrounding area of the Qingtu Lake[J]. Arid Zone Research, 2018, 35(6):1251-1261.] [5] 任媛, 刘普幸. 基于EVI和MNDWI指数的石羊河流域水体、植 被时空变化特征[J]. 冰川冻土, 2018, 40(4):217-225[. Ren Yuan, Liu Puxing. Temporal and spatial variations of water and vegetation in Shiyang River Basin based on EVI and MNDWI[J]. Journal of Glaciology and Geocryology, 2018, 40(4):217-225.] [6] 杨怡, 吴世新, 庄庆威, 等. 2000—2018 年古尔班通古特沙漠 EVI 时空变化特征[J]. 干旱区研究, 2019, 36(6):1512-1520. [Yang Yi, Wu Shixin, Zhuang Qingwei, et al. Spatiotemporal change of EVI in the Gurbantunggut Desert from 2000 to 2018 [J]. Arid Zone Research, 2019, 36(6):1512-1520.] [7] Coppin P, Jonckheere I, Nackaerts K, et al. Digital change detection methods in ecosystem monitoring:A review[J]. International Journal of Remote Sensing, 2004, 25(9):1565-1596. [8] 史浩伯, 陈亚宁, 李卫红, 等. 塔里木河下游植被种间关系与稳 定性分析[J]. 干旱区研究, 2020, 37(1):220-226[. Shi Haobo, Chen Yaning, Li Weihong, et al. Interspecific association and stability of vegetation in the lower reaches of the Tarim River[J]. Arid Zone Research, 2020, 37(1):220-226.] [9] 朱长明, 李均力, 沈占锋, 等. 塔里木河下游生态环境变化时序 监 测 与 对 比 分 析[J]. 地 球 信 息 科 学 学 报, 2019, 21(3): 437-444.[Zhu Changming, Li Junli, Shen Zhanfeng, et al. Time series monitoring and comparative analysis on eco-environment change in the lower reaches of the Tarim River[J]. Journal of Geo-Information Science, 2019, 21(3):437-444.] [10] 李丽君, 张小清, 陈长清, 等. 近20 a塔里木河下游输水对生态 环境的影响[J].干旱区地理, 2018, 41(2):21-30.[Li Lijun, Zhang Xiaoqing, Chen Changqin, et al. Ecological effects of water conveyance on the lower reaches of Tarim River in recent twenty years[J]. Arid Land Geography, 2018, 41(2):21-30.] [11]陈亚宁, 李卫红, 陈亚鹏, 等. 荒漠河岸林建群植物的水分利用 过程分析[J].干旱区研究, 2018, 35(1):130-136[. Chen Yaning, Li Weihong, Chen Yapeng, et al. Water use process of constructive plants in desert riparian forest[J]. Arid Zone Research, 2018, 35(1):130-136.] [12] 徐海量, 邓晓雅, 赵新风. 河道断流对胡杨(Populus euphratica) 径向生长量的影响[J].中国沙漠, 2013, 33(3):731-736[. Xu Hailiang, Deng Xiaoya, Zhao Xinfeng. Comparison of tree-ring growth of Populus euphratica under long-term zero flow condition in the lower reaches of the Tarim River[J]. Journal of Desert Research, 2013, 33(3):731-736.] [13]龚君君, 叶茂, 禹朴家, 等. 生态输水对塔里木河下游胡杨主干 径向生长量影响研究——以依干不及麻断面为例[J]. 干旱区 资源与环境, 2011, 25(2):162-166.[Gong Junjun, Ye Mao, Yu Piaojia, et al. Influence of ecological irrigation on the trunk growth of Populus euphratica in the lower reaches of the Tarim River:A case of Yiganbujima section[J]. Journal of Arid Land Resources and Environment, 2011, 25(2):162-166.] [14]刘博, 刘红玲, 穆雨迪, 等. 塔里木河下游柽柳沙包稳定同位素 碳与灌丛的相关性[J]. 干旱区研究, 2018, 35(3):735-742. [Liu Bo, Liu Hongling, Mu Yudi, et al. Correlation between the stable carbon isotopes in annual layers of Tamarix ramosissima sand-hillocks in the lower reaches of the Tarim River[J]. Arid Zone Research, 2018, 35(3):735-742.] [15] 叶茂, 徐海量, 任铭. 塔里木河下游生态输水的合理时间初探 [J].干旱区研究, 2012, 29(5):907-912[. Ye Mao, Xu Hailiang, Ren Ming. Primary study on the rational time of ecological water conveyance to lower reaches of the Tarim River[J]. Arid Zone Research, 2012, 29(5):907-912.] [16]陈亚宁, 叶朝霞, 毛晓辉, 等. 新疆塔里木河断流趋势分析与减 缓对策[J].干旱区地理, 2009, 32(6):813-820[. Chen Yaning, Ye Zhaoxia, Mao Xiaohui, et al. Dried-up trend of Tarim River and the counter measures for mitigation[J]. Arid Land Geography, 2009, 32(6):813-820.] [17] 古力米热·哈那提, 王光焰, 张音, 等. 干旱区间歇性生态输水 对地下水位与植被的影响机理研究[J]. 干旱区地理, 2018, 41 (4):50-57.[Gulimire Hanati, Wang Guangyan, Zhang Yin, et al. Influence mechanism of intermittent ecological water conveyance on groundwater level and vegetation in arid land[J]. Arid Land Geography, 2018, 41(4):50-57.] [18]朱绪超, 袁国富, 邵明安, 等. 塔里木河下游河岸带植被的空间 结构特征[J]. 植物生态学报, 2015, 39(11):1053-1061.[Zhu Xuchao, Yuan Guofu, Shao Ming’an, et al. Spatial pattern of riparian vegetation in desert of the lower Tarim River basin[J]. Chinese Journal of Plant Ecology, 2015, 39(11):1053-1061.] [19]刘桂林, 张落成, 李广宇, 等. 极端干旱区稀疏荒漠植被信息遥 感探测研究[J]. 干旱区资源与环境, 2013, 27(4):37-40.[Liu Guilin, Zhang Luochen, Li Guangyu, et al. Sparse desert vegetation extraction in extreme arid region based on remote sensing imagery[J]. Journal of Arid Land Resources and Environment, 2013, 27(4):37-40.] [20] 古丽·加帕尔, 陈曦, 马忠国, 等. 极端干旱区荒漠稀疏河岸林 遥感分类研究[J]. 中国沙漠, 2009, 29(6):1153-1161.[Guli Jiapaer, Chen Xi, Ma Zhongguo, et al. Classification of sparse desert riparian forest in extreme arid region[J]. Journal of Desert Research, 2009, 29(6):1153-1161.] [21] 李均力, 盛永伟, 骆剑承. 喜马拉雅山地区冰湖信息的遥感自 动化提取[J]. 遥感学报, 2011, 15(1):36-43.[Li Junli, Sheng Yongwei, Luo Jiancheng. Automatic extraction of himalayan glacial lakes with remote sensing[J]. Journal of Remote Sensing, 2011, 15(1):36-43.] [22] Huete A R. A soil adjusted vegetation index(SAVI)[J]. Remote Sensing of Environment, 1988, 25:295-309. [23]刘桂林, 艾里西尔·库尔班, 艾尔肯·艾白不拉, 等. 塔里木河下 游生态输水后植被景观格局动态变化研究[J]. 冰川冻土, 2012, 34(1):161-168.[Liu Guilin, Alishir Kurand, Arkin Abaydully, et al. Changes in landscape pattern in the lower reaches of Tarim River after an ecological water delivery[J]. Journal of Glaciology and Geocryology, 2012, 34(1):161-168.]
Outlines

/