Land and Water Resources

Evaluation of water and soil resources carrying capacity based on the DPSIR-Cloud Model coupling: A case study of the irrigation area on the south bank of the Yellow River in Inner Mongolia

  • TU Yike ,
  • HAN Wenguang ,
  • ZHANG Erdong ,
  • LI Hao ,
  • REN Li ,
  • LI Qiongfang
Expand
  • 1. College of Hydrology and Water Resources, Hohai University, Nanjing 210098, Jiangsu, China
    2. State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, Jiangsu, China
    3. Inner Mongolia Hetao Irrigation District Water Conservancy Development Center, Bayannur 015001, Inner Mongolia, China
    4. Yangtze Institute for Conservation and Green Development, Nanjing 210098, Jiangsu, China

Received date: 2025-01-14

  Revised date: 2025-03-30

  Online published: 2025-10-22

Abstract

The analysis of water and soil resources carrying capacity (WSRCC) is of significant theoretical and practical importance for the rational development and utilization of resources and promoting their coordinated development. This study focuses on the irrigation area on the south bank of the Yellow River in Inner Mongolia, China. Under the DPSIR model framework, a WSRCC evaluation index system was established, comprising five criterion layers: Driving Forces, Pressures, State, Impact, and Response. The WSRCC was comprehensively assessed using the cloud model based on a combination weighting method, and key obstacle factors were identified using an obstacle degree model. The results indicate that: (1) The combination weighting method optimizes the calculation of comprehensive indicator weights, enhancing the scientific accuracy of the evaluation results. (2) In 2023, the WSRCC in the irrigation area remained in a balanced state, reflecting a dynamically coordinated relationship between the water-soil system and socio-economic development. (3) The influence of each subsystem exhibits significant heterogeneity, with the obstacle degree weight of the Driving Force subsystem reaching 33.19%, while that of the Response subsystem is only 4.43%. (4) The water-soil resources matching coefficient is identified as the primary limiting factor. Thus, priority should be given to optimizing indicators within the Driving Force subsystem, while simultaneously improving those in the Pressure, State, and Impact subsystems. The DPSIR-cloud model coupling approach proposed in this study provides a novel methodological framework for WSRCC assessment in arid regions and offers valuable insights for enhancing the sustainable utilization of water and soil resources in the irrigation area on the south bank of the Yellow River.

Cite this article

TU Yike , HAN Wenguang , ZHANG Erdong , LI Hao , REN Li , LI Qiongfang . Evaluation of water and soil resources carrying capacity based on the DPSIR-Cloud Model coupling: A case study of the irrigation area on the south bank of the Yellow River in Inner Mongolia[J]. Arid Zone Research, 2025 , 42(5) : 829 -839 . DOI: 10.13866/j.azr.2025.05.06

References

[1] 王宇璇, 屈忠义, 白燕英, 等. 基于Sentinel-2影像的黄河南岸典型改良示范区土壤含盐量反演模型[J]. 农业机械学报, 2024, 55(4): 290-299.
  [Wang Yuxuan, Qu Zhongyi, Bai Yanying, et al. Soil salt inversion of typical improvement demonstration area of South Bank of Yellow River based on Sentinel-2images[J]. Transactions of the Chinese Society for Agricultural Machinery, 2024, 55(4): 290-299.]
[2] 陈宇, 刘燕, 赵志强. 交口灌区农业水土资源承载力评价及障碍因子诊断[J]. 灌溉排水学报, 2024, 43(7): 98-105.
  [Chen Yu, Liu Yan, Zhao Zhiqiang. The carrying capacity of agricultural soil and water resources and its determinants in Jiaokou Irrigation District[J]. Journal of Irrigation and Drainage, 2024, 43(7): 98-105.]
[3] 吴思源, 郝利娜. 2001—2021年黄河流域植被覆盖变化及其驱动因素[J]. 干旱区研究, 2024, 41(8): 1373-1384.
  [Wu Siyuan, Hao Lina. Changes in vegetation cover and driving factors in the Yellow River Basin from 2001 to 2021[J]. Arid Zone Research, 2024, 41(8): 1373-1384.]
[4] 李天霄, 付强, 彭胜民. 基于DPSIR模型的水土资源承载力评价[J]. 东北农业大学学报, 2012, 43(8): 128-134.
  [Li Tianxiao, Fu Qiang, Peng Shengmin. Evaluation of water and soil resources carrying capacity based on DPSIR frame work[J]. Journal of Northeast Agricultural University, 2012, 43(8): 128-134.]
[5] 李慧, 周维博, 庄妍, 等. 延安市农业水土资源匹配及承载力[J]. 农业工程学报, 2016, 32(5): 156-162.
  [Li Hui, Zhou Weibo, Zhuang Yan, et al. Agricultural water and soil resources matching patterns and carrying capacity in Yan’an City[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(5): 156-162.]
[6] 郑久瑜, 赵西宁, 操信春, 等. 河套灌区农业水土资源时空匹配格局研究[J]. 水土保持研究, 2015, 22(3): 132-136.
  [Zheng Jiuyu, Zhao Xining, Cao Xinchun, et al. Study on spatiotemporal matching pattern of agricultural water and land resources in Hetao Irrigation District[J]. Research of Soil and Water Conservation, 2015, 22(3): 132-136.]
[7] 邹全程, 伍昊洋, 叶威, 等. 基于PSO-PPE模型的宁夏扬水灌区水土资源承载力综合评价[J]. 水资源与水工程学报, 2019, 30(4): 250-256.
  [Zou Quancheng, Wu Haoyang, Ye Wei, et al. Comprehensive evaluation of soil and water resource carrying capacity in Ningxia Irrigation Area based on PSO-PPE model[J]. Journal of Water Resources and Water Engineering, 2019, 30(4): 250-256.]
[8] 王云生. 乡村振兴战略下吉林省农业支持保护政策体系研究[D]. 长春: 吉林大学, 2021.
  [Wang Yunsheng. Research on Agricultural Support and Protection Policy System in Jilin Province under the Background of Rural Revitalization[D]. Changchun: Jilin University, 2021.]
[9] Roberts I, Griffiths R. A model for the evaporation of droplets from sand[J]. Atmospheric Environment, 1995, 29(11): 1307-1317.
[10] 曲绅豪, 姚怀柱, 王彦东, 等. 江苏典型灌区农业水土资源匹配现状及其承载力特征[J]. 水土保持研究, 2023, 30(6): 452-457.
  [Qu Shenhao, Yao Huaizhu, Wang Yandong, et al. Matching status and bearing capacity characteristics of agricultural water and land resources in typical irrigation districts of Jiangsu Province[J]. Research of Soil and Water Conservation, 2023, 30(6): 452-457.]
[11] 施开放, 刁承泰, 孙秀锋. 基于熵权可拓决策模型的重庆三峡库区水土资源承载力评价[J]. 环境科学学报, 2013, 33(2): 609-616.
  [Shi Kaifang, Diao Chengtai, Sun Xiufeng. Evaluation of soil-water resources carrying capacity based on entropy weight extension decision model in the Three Gorges Reservoir Region of Chongqing[J]. Acta Scientiae Circumstantiae, 2013, 33(2): 609-616.]
[12] 孙佳歆, 齐鹏, 章光新, 等. 基于生态足迹法的农业水土资源承载力分析——以三江平原友谊农场为例[J]. 地理科学, 2024, 44(6): 1060-1068.
  [Sun Jiaxin, Qi Peng, Zhang Guangxin, et al. Agricultural water and land resources carrying capacity based on ecological footprint method: A case of Youyi Farm in Sanjiang Plain[J]. Scientia Geographica Sinica, 2024, 44(6): 1060-1068.]
[13] 李晓燕, 郝晋珉, 陈爱琪. 山东省农业水土资源时空匹配格局及评价研究[J]. 中国农业大学学报, 2020, 25(11): 1-11.
  [Li Xiaoyan, Hao Jinmin, Chen Aiqi. Time-space matching pattern and evaluation of agricultural water and soil resources in Shandong Province[J]. Journal of China Agricultural University, 2020, 25(11): 1-11.]
[14] 姜秋香, 赵蚰竹, 王子龙, 等. 系统动力学在水土资源系统中的应用研究进展[J]. 东北农业大学学报, 2017, 48(7): 91-96.
  [Jiang Qiuxiang, Zhao Youzhu, Wang Zilong, et al. Research advance on the system dynamics used in the soil and water resources[J]. Journal of Northeast Agricultural University, 2017, 48(7): 91-96.]
[15] 梁军. 河南省水土资源承载力评价研究[J]. 河南水利与南水北调, 2023, 52(12): 27-28, 62.
  [Liang Jun. Study on the evaluation of the carrying capacity of water and soil resources in Henan Province[J]. Water Resources and South-to-North Water Diversion, 2023, 52(12): 27-28, 62.]
[16] 朱薇, 周宏飞, 李兰海, 等. 哈萨克斯坦农业水土资源承载力评价及其影响因素识别[J]. 干旱区研究, 2020, 37(1): 254-263.
  [Zhu Wei, Zhou Hongfei, Li Lanhai, et al. Evaluation on carrying capacity of agricultural water and land resources and identification of affecting factors in Kazakhstan[J]. Arid Zone Research, 2020, 37(1): 254-263.]
[17] 赵晨程, 高玉琴, 刘钺, 等. 基于云模型的生态河道建设评价[J]. 水资源保护, 2022, 38(2): 183-189.
  [Zhao Chencheng, Gao Yuqin, Liu Yue, et al. Evaluation of ecological river construction based on cloud model[J]. Water Resources Protection, 2022, 38(2): 183-189.]
[18] 季晓翠, 王建群, 傅杰民. 基于云模型的滨海小流域水生态文明评价[J]. 水资源保护, 2019, 35(2): 74-79.
  [Ji Xiaocui, Wang Jianqun, Fu Jiemin. Evaluation of water ecological civilization in small coastal watershed based on cloud model[J]. Water Resources Protection, 2019, 35(2): 74-79.]
[19] 李德毅, 刘常昱. 论正态云模型的普适性[J]. 中国工程科学, 2004, 6(8): 28-34.
  [Li Deyi, Liu Changyu. Study on the universality of the Normal Cloud Model[J]. Strategic Study of CAE, 2004, 6(8): 28-34.]
[20] Wharfe J. Hazardous chemicals in complex mixtures: A role for direct toxicity assessment[J]. Ecotoxicology, 2004, 13(5): 413-421.
[21] Jago-On K A B, Kaneko S, Fujikura R, et al. Urbanization and subsurface environmental issues: An attempt at DPSIR model application in Asian cities[J]. Science of the Total Environment, 2009, 407(9): 3089-3104.
[22] Saaty T L. How to make a decision: The analytic hierarchy process[J]. European Journal of Operational Research, 1990, 48(1): 9-26.
[23] Shannon C E. A mathematical theory of communication[J]. Bell Systems Technical Journal, 1948, 27(4): 623-656.
[24] 闫滨, 姜秀慧, 钟占华, 等. 基于改进权重的综合水质标识指数法的大伙房水库上游水质评价研究[J]. 沈阳农业大学学报, 2019, 50(3): 314-323.
  [Yan Bin, Jiang Xiuhui, Zhong Zhanhua, et al. Water quality evaluation of the upstream of Dahuofang Reservoir based on comprehensive water quality identification index method of improved weight[J]. Journal of Shenyang Agricultural University, 2019, 50(3): 314-323.]
[25] 李德毅, 孟海军, 史雪梅. 隶属云和隶属云发生器[J]. 计算机研究与发展, 1995(6): 15-20.
  [Li Deyi, Meng Haijun, Shi Xuemei. Membership clouds and membership clouds generators[J]. Journal of Computer Research and Development, 1995(6): 15-20.]
[26] Sawaya K E, Olmanson L G, Heinert N J, et al. Extending satellite remote sensing to local scales: Land and water resource monitoring using high-resolution imagery[J]. Remote Sensing of Environment, 2003, 88(1-2): 144-156.
[27] 刘登峰, 王栋, 丁昊, 等. 水体富营养化评价的熵-云耦合模型[J]. 水利学报, 2014, 45(10): 1214-1222.
  [Liu Dengfeng, Wang Dong, Ding Hao, et al. Eutrophication assessment by Entropy-Cloud Model[J]. Journal of Hydraulic Engineering, 2014, 45(10): 1214-1222.]
[28] 冀明欣, 冯天骄, 肖辉杰, 等. 河套灌区不同配置农田防护林对田间土壤水分和养分储量的影响[J]. 干旱区研究, 2023, 40(8): 1268-1279.
  [Ji Mingxin, Feng Tianjiao, Xiao Huijie, et al. Effects of different farmland shelterbelts on soil water and nutrient storage in the Hetao Irrigation District[J]. Arid Zone Research, 2023, 40(8): 1268-1279.]
[29] 陆莹, 张敏, 王彦阁. 内蒙古黄河流域生态保护恢复优先区识别[J]. 干旱区研究, 2024, 41(11): 1946-1955.
  [Lu Ying, Zhang Min, Wang Yange. Identification of priority areas for the ecological protection and restoration of the Yellow River Basin in Inner Mongolia[J]. Arid Zone Research, 2024, 41(11): 1946-1955.]
[30] Xu C, Wang X, Liu Z, et al. Analysis of the spatial and temporal evolution of water and soil resource carrying capacity in arid region of Northwest China[J]. Water Supply, 2022, 22(12): 8813-8834.
Outlines

/