Applicability evaluation of three kinds of precipitation products in eastern Qinghai-Xizang Plateau
Received date: 2024-11-14
Revised date: 2025-04-18
Online published: 2025-07-07
Based on the 2022 daily precipitation data from weather stations in the eastern Tibetan Plateau, this study evaluated the accuracy of three datasets from the China Meteorological Administration: the Multi-source Precipitation Analysis System (CMPAS), Land Data Assimilation System (CLDAS), and Global Atmospheric Reanalysis (CRA)—via error indices and grading methods. The results indicate: (1) CMPAS exhibits the lowest error and highest correlation, making it the most reliable for annual precipitation analysis. (2) CMPAS monthly data align closely with observations, while CRA overestimates and CLDAS underestimates precipitation in most months. (3) During two large-scale precipitation events, CLDAS best captures accumulated rainfall, while CMPAS more accurately reflects precipitation centers, intensities, timing, and location. Overall, CMPAS is the most effective dataset for analyzing precipitation in the region, supporting improved monitoring of sparse areas and laying a solid foundation for climate operations and disaster prevention.
LI Moyu , DONG Shaorui , GUO Yingxiang . Applicability evaluation of three kinds of precipitation products in eastern Qinghai-Xizang Plateau[J]. Arid Zone Research, 2025 , 42(7) : 1173 -1183 . DOI: 10.13866/j.azr.2025.07.02
| [1] | Li Z, Yang D, Gao B, et al. Multiscale hydrologic applications of the latest satellite precipitation products in the Yangtze River basin using a distributed hydrologic model[J]. Journal of Hydrometeorology, 2015, 16(1): 407-426. |
| [2] | Chappel L A, Renzullo L J, Raupach T H, et al. Evaluating geostatistical methods of blending satellite and gauge data to estimate near real-time daily rainfall for Australia[J]. Journal of Hydrology, 2013, 493: 105-114. |
| [3] | Guo H, Chen S, Bao A M, et al. Early assessment of integrated multi-satellite retrievals for global precipitation measurement over China[J]. Atmospheric Research, 2016, 176: 121-133. |
| [4] | 李巧, 戚友存, 朱自伟, 等. 复杂地形下C波段雷达定量降水估计算法[J]. 气象学报, 2021, 79(4): 689-702. |
| [Li Qiao, Qi Youcun, Zhu Ziwei, et al. Quantitative precipitation estimation algorithm for C-band radar situated in complex topographical regions[J]. Acta Meteorologica Sinica, 2021, 79(4): 689-702.] | |
| [5] | 柳云雷, 李昌兴, 张乐坚, 等. 基于高分辨率高程数据统计分析新一代天气雷达组网的地形遮挡影响[J]. 气象学报, 2020, 78(4): 705-720. |
| [Liu Yunlei, Li Changxing, Zhang Lejian, et al. Statistical analysis of terrain blockage impacts on the CINRAD network based on DEM data[J]. Acta Meteorologica Sinica, 2020, 78(4): 705-720.] | |
| [6] | Ma Y, Sun X, Chen H, et al. A two-stage blending approach for merging multiple satellite precipitation estimates and rain gauge observations: An experiment in the northeastern Tibetan Plateau[J]. Hydrology and Earth System Sciences, 2021, 25(1): 359-374. |
| [7] | 陈爱军, 张寅, 楚志刚. 基于FY-4A QPE的中亚五国降水时空分布特征[J]. 干旱区研究, 2023, 40(9): 1369-1381. |
| [Chen Aijun, Zhang Yin, Chu Zhigang. Spatiotemporal distribution of precipitation in five Central Asian countries based on FY-4A quantitative precipitation estimates[J]. Arid Zone Research, 2023, 40(9): 1369-1381.] | |
| [8] | 邵建, 张肃诏, 陈敏, 等. FY-4A卫星在宁夏短时强降水中的适用性研究[J]. 干旱区研究, 2023, 40(2): 163-172. |
| [Shao Jian, Zhang Suzhao, Chen Min, et al. Application of FY-4A satellite data in short-time severe precipitation of Ningxia[J]. Arid Zone Research, 2023, 40(2): 163-172.] | |
| [9] | Yang M, Liu G, Chen T, et al. Evaluation of GPM IMERG precipitation products with the point rain gauge records over Sichuan, China[J]. Atmospheric Research, 2020, 246: 105101. |
| [10] | 陈圆圆, 宋晓东, 黄敬峰, 等. 基于地面站点观测降水资料的中国区域日降水融合产品精度评价[J]. 自然资源学报, 2016, 31(6): 1004-1014. |
| [Chen Yuanyuan, Song Xiaodong, Huang Jingfeng, et al. Evaluation of the high-resolution daily merged precipitation product over China based on in situ observations[J]. Journal of Natural Resources, 2016, 31(6): 1004-1014.] | |
| [11] | 师春香, 潘旸, 谷军霞, 等. 多源气象数据融合格点实况产品研制进展[J]. 气象学报, 2019, 77(4): 774-783. |
| [Shi Chunxiang, Pan Yang, Gu Junxia, et al. A review of multi-source meteorological data fusion products[J]. Acta Meteorologica Sinica, 2019, 77(4): 774-783.] | |
| [12] | 司瑶冰, 韩经纬, 李云鹏, 等. 基于网格数据的内蒙古决策气象服务技术研究与实现[J]. 沙漠与绿洲气象, 2020, 14(6): 127-133. |
| [Si Yaobing, Han Jingwei, Li Yunpeng, et al. Technology and implementation of meteorological decision-making services based on grid data in Inner Mongolia[J]. Desert and Oasis Meteorology, 2020, 14(6): 127-133.] | |
| [13] | Adler R F, Mathew S, George H, et al. The Global Precipitation Climatology Project (GPCP) monthly analysis (New Version 2.3) and a review of 2017 global precipitation[J]. Atmosphere, 2018, 9(4): 138. |
| [14] | 宇婧婧, 沈艳, 潘旸, 等. 中国区域逐日融合降水数据集与国际降水产品的对比评估[J]. 气象学报, 2015, 73(2): 394-410. |
| [Yu Jingjing, Shen Yan, Pan Yang, et al. Comparative assessment between the daily merged precipitation dataset over China and the worlds popular counterparts[J]. Acta Meteorologica Sinica, 2015, 73(2): 394-410.] | |
| [15] | 沈艳, 潘旸, 宇婧婧, 等. 中国区域小时降水量融合产品的质量评估[J]. 大气科学学报, 2013, 36(1): 37-46. |
| [Shen Yan, Pan Yang, Yu Jingjing, et al. Quality assessment of hourly merged precipitation product over China[J]. Transactions of Atmospheric Sciences, 2013, 36(1): 37-46.] | |
| [16] | 尹瑞琪, 李琼芳, 陈启慧, 等. 伊犁河上游流域三种日尺度降水产品性能评估[J]. 干旱区研究, 2024, 41(4): 540-549. |
| [Yin Ruiqi, Li Qiongfang, Chen Qihui, et al. Performance evaluation of three daily precipitation products in the upper reaches of the Ili River[J]. Arid Zone Research, 2024, 41(4): 540-549.] | |
| [17] | 曾岁康, 雍斌. 全球降水计划IMERG和GSMaP反演降水在四川地区的精度评估[J]. 地理学报, 2019, 74(7): 1305-1318. |
| [Zeng Suikang, Yong Bin. Evaluation of the GPM-based IMERG and GSMaP precipitation estimates over the Sichuan region[J]. Acta Geographica Sinica, 2019, 74(7): 1305-1318.] | |
| [18] | 潘旸, 沈艳, 宇婧婧, 等. 基于贝叶斯融合方法的高分辨率地面-卫星-雷达三源降水融合试验[J]. 气象学报, 2015, 73(1): 177-186. |
| [Pan Yang, Shen Yan, Yu Jingjing, et al. An experiment of high-resolution gauge-radar-satellite combined precipitation retrieval based on the Bayesian merging method[J]. Acta Meteorologica Sinica, 2015, 73(1): 177-186.] | |
| [19] | 许冠宇, 李琳琳, 田刚, 等. 国家级降水融合产品在长江流域的适用性评估[J]. 暴雨灾害, 2020, 39(4): 400-408. |
| [Xu Guanyu, Li Lingling, Tian Gang, et al. Assessing the applicability of national precipitation merged products in the Yangtze River Basin[J]. Torrential Rain and Disasters, 2020, 39(4): 400-408.] | |
| [20] | Rodell M, Houser R, Jambor U, et al. The global land data assimilation system[J]. Bulletin of the American Meteorological Society, 2004, 85(3): 381-394. |
| [21] | 崔园园, 覃军, 敬文琪, 等. GLDAS和CLDAS融合土壤水分产品在青藏高原地区的适用性评估[J]. 高原气象, 2018, 37(1): 123-136. |
| [Cui Yuanyuan, Qin Jun, Jing Wenqi, et al. Applicability evaluation of merged soil moisture in GLDAS and CLDAS products over Qinghai-Tibetan Plateau[J]. Plateau Meteorology, 2018, 37(1): 123-136.] | |
| [22] | 齐媛媛, 陈莹莹, 施建成. 欧洲陆面数据同化系统组成,系统设计和原理简介[J]. 遥感信息, 2007(4): 93-97. |
| [Qi Yuanyuan, Chen Yingying, Shi Jiancheng. Review on European land data assimilation system[J]. Remote Sensing Information, 2007(4): 93-97.] | |
| [23] | 师春香, 张帅, 孙帅, 等. 改进的CLDAS降水驱动对中国区域积雪模拟的影响评估[J]. 气象, 2018, 44(8): 985-997. |
| [Shi Chunxiang, Zhang Shuai, Sun Shuai, et al. Effect of improved precipitation CLDAS on snow simulation in China[J]. Meteorological Monthly, 2018, 44(8): 985-997.] | |
| [24] | 韩帅, 师春香, 姜志伟, 等. CMA高分辨率陆面数据同化系统(HRCLDAS-V1.0)研发及进展[J]. 气象科技进展, 2018, 8(1): 102-108, 116. |
| [Han Shuai, Shi Chunxiang, Jiang Zhiwei, et al. Development and progress of high resolution CMA land surface data assimilation system[J]. Advances in Meteorological Science and Technology, 2018, 8(1): 102-108, 116.] | |
| [25] | 王旻燕, 姚爽, 姜立鹏, 等. 我国全球大气再分析(CRA-40)卫星遥感资料的收集和预处理[J]. 气象科技进展, 2018, 8(1): 158-163. |
| [Wang Minyan, Yao Shuang, Jiang Lipeng, et al. Collection and pre-processing of satellite remote-sensing data in CRA-40 (CMA’s Global Atmospheric ReAnalysis)[J]. Advances in Meteorological Science and Technology, 2018, 8(1): 158-163.] | |
| [26] | 徐柳昕, 王文雨, 王晓燕, 等. 多源降水产品在高寒内陆河流域的适用性和误差组分[J]. 干旱区研究, 2025, 42(1): 51-62. |
| [Xu Liuxin, Wang Wenyu, Wang Xiaoyan, et al. Evaluation and error decomposition of multisource precipitation data in an alpine and endorheic river watershed[J]. Arid Zone Research, 2025, 42(1): 51-62.] | |
| [27] | 赵天保, 符淙斌, 柯宗建, 等. 全球大气再分析资料的研究现状与进展[J]. 地球科学进展, 2010, 25(3): 242-254. |
| [Zhao Tianbao, Fu Congbin, Ke Zongjian, et al. Research status and progress of global atmospheric reanalysis data[J]. Advances in Earth Science, 2010, 25(3): 242-254.] | |
| [28] | 王彩霞, 黄安宁, 郑鹏, 等. 中国第一代全球陆面再分析(CRA40/Land)气温和降水产品在中国大陆的适用性评估[J]. 高原气象, 2022, 41(5): 1325-1334. |
| [Wang Caixia, Huang Anning, Zheng Peng, et al. Applicability evaluation of China’s first generation of global land surface reanalysis(CRA40/Land)air temperature and precipitation products in China’s mainland[J]. Plateau Meteorology, 2022, 41(5): 1325-1334.] | |
| [29] | Hodges K I, Lee R W, Bengtsson L. A comparison of extratropical cyclones in recent reanalyses ERA-Interim, NASA MERRA, NCEP CFSR, and JRA-25[J]. Journal of Climate, 2011, 24(5): 4888-4906. |
| [30] | 杜冰, 吴薇, 黄晓龙, 等. 多种融合降水实况分析产品在雅安宝兴暴雨过程中的适用性评估[J]. 高原山地气象研究, 2023, 43(1): 111-118. |
| [Du Bing, Wu Wei, Huang Xiaolong, et al. Applicability assessment of merged precipitation real-time products in the process of flood disaster in Baoxing, Ya’an[J]. Plateau Mountain Meteorology Research, 2023, 43(1): 111-118.] | |
| [31] | 旷兰, 田茂举, 翟丹华, 等. 基于2021年重庆市暴雨监测数据的CMPAS产品精度评估[J]. 水电能源科学, 2022, 40(12): 6-10. |
| [Kuang Lan, Tian Maoju, Zhai Danhua, et al. CMPAS product accuracy evaluation based on Chongqing City rainstorm monitoring data in 2021[J]. Water Resources and Power, 2022, 40(12): 6-10.] | |
| [32] | 旷兰, 田茂举, 李强, 等. 多源降水融合分析产品在重庆复杂地形下的精度评价[J]. 中国农业气象, 2023, 44(1): 71-81. |
| [Kuang Lan, Tian Maoju, Li Qiang, et al. Study on accuracy evaluation of multi-source precipitation fusion analysis products under complex terrain in Chongqing[J]. Chinese Journal of Agrometeorology, 2023, 44(1): 71-81.] | |
| [33] | 陈小婷, 刘瑞芳, 梁绵, 等. 三源融合降水产品在陕西省的适用性评估[J]. 陕西气象, 2023(1): 1-7. |
| [Chen Xiaoting, Liu Ruifang, Liang Mian, et al. Applicability evaluation of CMPAS in Shaanxi Province[J]. Journal of Shaanxi Meteorology, 2023(1): 1-7.] | |
| [34] | 鲁奕岑, 徐宁, 王丽吉, 等. 浙江多源融合实况分析产品质量评估及应用[J]. 科技通报, 2021, 37(9): 23-28. |
| [Lu Yicen, Xu Ning, Wang Liji, et al. Analysis of real time product quality evaluation and application in Zhejiang[J]. Bulletin of Science and Technology, 2021, 37(9): 23-28.] | |
| [35] | Dai L, Che T, Ding Y, et al. Evaluation of snow cover and snow depth on the Qinghai-Tibetan Plateau derived from passive microwave remote sensing[J]. The Cryosphere, 2017, 11(4): 1933-1948. |
| [36] | 陈权亮, 刘皓, 胡淼, 等. 青藏高原东侧复杂地形区极端降水研究进展[J]. 暴雨灾害, 2024, 43(3): 255-265. |
| [Chen Quanliang, Liu Hao, Hu Miao, et al. A review of the studies on extreme precipitation in the complex terrain region on the eastern side of the Tibetan Plateau[J]. Torrential Rain and Disasters, 2024, 43(3): 255-265.] | |
| [37] | 潘旸, 谷军霞, 宇婧婧, 等. 中国区域高分辨率多源降水观测产品的融合方法试验[J]. 气象学报, 2018, 76(5): 755-766. |
| [Pan Yang, Gu Junxia, Yu Jingjing, et al. Test of merging methods for multi-source observed precipitation products at high resolution over China[J]. Acta Meteorologica Sinica, 2018, 76(5): 755-766.] | |
| [38] | 孙小龙, 宋海清, 李平, 等. 基于CLDAS资料的内蒙古干旱监测分析[J]. 气象, 2015, 41(10): 1245-1252. |
| [Sun Xiaolong, Song Haiqing, Li Ping, et al. Analysis of drought monitoring in inner mongolia based on CLDAS data[J]. Meteorological Monthly, 2015, 41(10): 1245-1252.] | |
| [39] | 饶莉娟, 王健林, 张星. 不同插值方法对精细化预报产品在青岛地区的检验比较[J]. 中国农学通报, 2020, 36(32): 100-108. |
| [Rao Lijuan, Wang Jianlin, Zhang Xing. Different interpolation methods: Comparison for refined forecast products in Qingdao area[J]. Chinese Agricultural Science Bulletin, 2020, 36(32): 100-108.] | |
| [40] | 蒋雨荷, 黄晓龙, 李施颖, 等. 四川CLDAS 5 km小时能见度实况产品与能见度观测站资料质量对比评估[J]. 高原山地气象研究, 2020, 40(3): 73-78. |
| [Jiang Yuhe, Huang Xiaolong, Li Shiying, et al. Comparison and evaluation of the data quality between CLDAS 5 km hourly visibility products and visibility observation stations in Sichuan Province[J]. Plateau and Mountain Research, 2020, 40(3): 73-78.] | |
| [41] | 于洋, 卫伟, 陈利顶, 等. 黄土高原年均降水量空间插值及其方法比较[J]. 应用生态学报, 2015, 26(4): 999-1006. |
| [Yu Yang, Wei Wei, Chen Liding, et al. Comparison on the methods for spatial interpolation of the annual average precipitation in the Loess Plateau region[J]. Chinese Journal of Applied Ecology, 2015, 26(4): 999-1006.] | |
| [42] | 李依瞳, 慕秀香, 朴美花, 等. 2019—2020年1—3月降水和气温的多源数据融合产品检验评估及对比分析[J]. 气象灾害防御, 2021, 28(3): 1-5. |
| [Li Yitong, Mu Xiuxiang, Piao Meihua, et al. Evaluation and comparative analysis of multi-source data fusion products of precipitation and temperature from January to March in 2019-2020[J]. Meteorological Disaster Prevention, 2021, 28(3): 1-5.] | |
| [43] | 龙柯吉, 师春香, 韩帅, 等. 中国区域高分辨率温度实况融合格点分析产品质量评估[J]. 高原山地气象研究, 2019, 39(3): 67-74. |
| [Long Keji, Shi Chunxiang, Han Shuai, et al. Quality assessment of high resolution temperature merged grid analysis product in China[J]. Plateau and Mountain Meteorology Research, 2019, 39(3): 67-74.] | |
| [44] | 王雅萍, 王遂缠, 孔令旺. CLDAS降水产品的适用性分析及机器学习订正应用[J]. 气象水文海洋仪器, 2024, 41(3): 111-115. |
| [Wang Yaping, Wang Suichan, Kong Lingwang. Application analysis and machine learning correction of CLDAS precipitation product[J]. Meteorological, Hydrological and Marine Instruments, 2024, 41(3): 111-115.] | |
| [45] | 陈科文, 张祖平, 龙军. 多源信息融合关键问题、研究进展与新动向[J]. 计算机科学, 2013, 40(8): 6-13. |
| [Chen Kewen, Zhang Zuping, Long Jun. Multisource information fusion: Key issues, research progress and new trends[J]. Computer Science, 2013, 40(8): 6-13.] |
/
| 〈 |
|
〉 |