Precipitation retrieval for Xinjiang region based on radar and remote sensing satellites
Received date: 2024-12-23
Revised date: 2025-03-11
Online published: 2025-06-11
To more accurately obtain precipitation distributions in remote areas, this study combined the high-resolution advantages of radar and the wide-coverage detection of satellites. By integrating radar and satellite-derived precipitation, we generated high-precision quantitative precipitation estimation products. Using the strong convective events in Xinjiang on August 12 and 13, 2023, as an example, we used radar reflectivity for precipitation inversion based on cloud classification and Z-R relationships. We fed the Himawari 9 satellite brightness temperature and IMERG precipitation into a BP neural network model to establish the relationship between the average brightness temperature and the average rainfall intensity. Subsequently, we used the instantaneous brightness temperature of the Himawari 9 satellite to invert the momentary precipitation through the BP neural network model. We also proposed two precipitation data fusion schemes: Scheme I uses a uniform correction value to integrate radar and satellite precipitation, whereas Scheme Ⅱ further considers the precipitation intensity levels for comparison. Finally, we obtained high-precision precipitation inversion products for Xinjiang. The results showed that: (1) Cloud classification based on brightness temperature can finely estimate precipitation within the radar range, and brightness temperature differences can reduce the impact of non-precipitating clouds to some extent. (2) The root mean square error (RMSE) of the satellite precipitation inversion was 1.793 mm·h-1, with a coefficient of determination (R2) of 0.572, indicating reasonable model accuracy. The binary classification score indicated that the model can accurately invert precipitation in over 70% of the areas. (3) The fusion of precipitation by the two schemes slightly improved the accuracy of short-duration light rain distributions. Scheme Ⅱ outperformed Scheme I for short-duration moderate rain but showed a slight decline for short-duration heavy rain compared with Scheme I, indicating that the asynchrony between satellite observation and near-surface precipitation had some impact. (4) Under a 95% confidence interval, the P-values for the RMSE and R2 differences between the two schemes and satellite inversion were all less than 0.005, while the P-value for Scheme Ⅱ compared with Scheme I was greater than 0.05. Both fusion schemes significantly improved the accuracy of the satellite precipitation; however, the improvement of Scheme Ⅱ, which considers the precipitation intensity levels, over Scheme I was minimal.
GUO Jianmao , WU Dengguo , HAN Jinlong , ZHANG Rushui , WANG Yong . Precipitation retrieval for Xinjiang region based on radar and remote sensing satellites[J]. Arid Zone Research, 2025 , 42(6) : 957 -969 . DOI: 10.13866/j.azr.2025.06.01
| [1] | Zhuge X Y, Zou X L. Summertime convective initiation nowcasting over southeastern China based on advanced Himawari imager observations[J]. Journal of the Meteorological Society of Japan, 2018, 96(4): 337-353. |
| [2] | 聂道洋, 肖安, 夏侯杰. 基于改进卷积技术的雷达回波图像质量控制方法研究[J]. 暴雨灾害, 2022, 41(5): 598-606. |
| [Nie Daoyang, Xiao An, Xia Houjie. Study on radar echo image quality control based on improved convolution technology[J]. Torrential Rain and Disasters, 2022, 41(5): 598-606.] | |
| [3] | Rutledgee S A, Hilburn K A, Clayton A, et al. Evaluating geostationary lightning mapper flash rates within intense convective storms[J]. Journal of Geophysical Research: Atmospheres, 2020, 125(14): e2020JD032827. |
| [4] | 潘旸, 谷军霞, 宇婧婧, 等. 中国区域高分辨率多源降水观测产品的融合方法试验[J]. 气象学报, 2018, 76(5): 755-766. |
| [Pan Yang, Gu Junxia, Yu Jingjing, et al. Experimental study on the fusion method of high-resolution multi-source precipitation observation products in China[J]. Acta Meteorologica Sinica, 2018, 76(5): 755-766.] | |
| [5] | Goudenhoofdt E, Delobbe L. Statistical characteristics of convective storms in belgium derived from volumetric weather radar observations[J]. Journal of Applied Meteorology & Climatology, 2013, 52(4): 918-934. |
| [6] | Lee Y R, Shin D B, Kim J H, et al. Precipitation estimation over radar gap areas based on satellite and adjacent radar observations[J]. Atmospheric Measurement Techniques, 2015, 8(2): 719-728. |
| [7] | 杨轩, 曾燕, 邱新法, 等. 基于机器学习算法的多源月尺度融合降水产品在中国区域的检验评估[J]. 暴雨灾害, 2023, 42(5): 595-605. |
| [Yang Xuan, Zeng Yan, Qiu Xinfa, et al. Examination and evaluation of multi-source monthly scale fusion precipitation product in China based on machine learning algorithm[J]. Torrential Rain and Disasters, 2023, 42(5): 595-605.] | |
| [8] | Lei H J, Zhao H Y, Ao T Q. A two-step merging strategy for incorporating multi-source precipitation products and gauge observations using machine learning classification and regression over China[J]. Hydrology and Earth System Sciences, 2022, 26(11): 2969-2995. |
| [9] | 杨有林, 韩格格, 马宁, 等. 基于多源数据融合的降水数据质量控制技术研究[J]. 山地气象学报, 2024, 48(2): 49-56. |
| [Yang Youlin, Han Gege, Ma Ning, et al. Research on precipitation data quality control technology based on multi-source data fusion[J]. Journal of Mountain Meteorology, 2024, 48(2): 49-56.] | |
| [10] | 符梓霖, 王磊, 李谢辉, 等. 卫星微波湿度计资料同化对雅鲁藏布江大峡谷暴雨模拟的影响[J]. 高原气象, 2024, 43(4): 883-894. |
| [Fu Zilin, Wang Lei, Li Xiehui, et al. Impact of satellite microwave hygrometer data assimilation on the Yarlung Zangbo Grand Canyon area heavy rain simulation[J]. Plateau Meteorology, 2024, 43(4): 883-894.] | |
| [11] | 李炎坤, 高黎明, 张乐乐, 等. 青海湖流域及周边区域TRMM 3B43降水数据降尺度方法对比分析[J]. 干旱区研究, 2022, 39(6): 1706-1716. |
| [Li Yankun, Gao Liming, Zhang Lele, et al. Comparison of downscaling methods for TRMM 3B43 precipitation data in the Qinghai Lake Basin and its surrounding areas[J]. Arid Zone Research, 2022, 39(6): 1706-1716.] | |
| [12] | Tao Y M, Hsu K L, Ihler A, et al. A two-stage deep neural network framework for precipitation estimation from bispectral satellite information[J]. Journal of Hydrometeorology, 2018, 19(2): 393-408. |
| [13] | Sharma N, Vinayak S M, Thapliyal P K, et al. A new calibration correction method for INSAT-3D/3DR brightness temperatures to improve rainfall estimation[J]. International Journal of Remote Sensing, 2023, 44(20): 6280-6297. |
| [14] | Wang G, Han W, Ye S, et al. FY-4A/AGRI infrared brightness temperature estimation of precipitation based on multi-model ensemble learning[J]. Earth and Space Science, 2024, 11(2): e2023EA003311. |
| [15] | 孙绍辉, 李万彪, 黄亦鹏. 利用Himawari-8卫星红外图像反演降雨[J]. 北京大学学报(自然科学版), 2019, 55(2): 215-226. |
| [Sun Shaohui, Li Wanbiao, Huang Yipeng. Retrieval of precipitation by using Himawari-8 infrared images[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2019, 55(2): 215-226.] | |
| [16] | 王根, 王东勇, 吴蓉. Himawari-8/AHI红外光谱资料降水信号识别与反演初步应用研究[J]. 红外与毫米波学报, 2020, 39(2): 251-262. |
| [Wang Gen, Wang Dongyong, Wu Rong. Application study of Himawari-8/AHI infrared spectral data on precipitation signal recognition and retrieval[J]. Journal of Infrared and Millimeter Waves, 2020, 39(2): 251-262.] | |
| [17] | 王瑞. 基于深度学习的葵花8卫星亮温资料降水反演研究[D]. 南京: 南京信息工程大学, 2023. |
| [Wang Rui. Research on Precipitation Retrieval Using Brightness Temperature Data from Himawari-8 Satellite Based on Deep Learning[D]. Nanjing: Nanjing University of Information Science & Technology, 2023.] | |
| [18] | Petkovic V, Kummerow C D. Performance of the GPM passive microwave retrieval in the Balkan flood event of 2014[J]. Journal of Hydrometeorology, 2015, 16(6): 2501-2518. |
| [19] | 黄亦鹏, 李万彪, 赵玉春, 等. 基于雷达与卫星的对流触发观测研究和临近预报技术进展[J]. 地球科学进展, 2019, 34(12): 1273-1287. |
| [Huang Yipeng, Li Wanbiao, Zhao Yuchun, et al. A review of radar and satellite based observational studies and nowcasting techniques on convection initiation[J]. Advances in Earth Science, 2019, 34(12): 1273-1287.] | |
| [20] | 程昌玉, 张乐坚, 梁海河, 等. 基于气象卫星资料的天气雷达非降水回波消除方法[J]. 气象与减灾研究, 2017, 40(2): 141-145. |
| [Cheng Changyu, Zhang Lejian, Liang Haihe, et al. Elimination method of non-precipitation echoes in weather radar based on meteorological satellite data[J]. Meteorology and Disaster Reduction Research, 2017, 40(2): 141-145.] | |
| [21] | 黄小燕, 韦春霞, 赵华生, 等. 地面-雷达-卫星资料的广西降水临近预报应用效果评估[J]. 气象研究与应用, 2022, 43(4): 50-58. |
| [Huang Xiaoyan, Wei Chunxia, Zhao Huasheng, et al. Evaluation of the application effect of Ground-Radar-Satellite data in Guangxi precipitation proximity forecast[J]. Journal of Meteorological Research and Application, 2022, 43(4): 50-58.] | |
| [22] | 黎玥君, 郭品文. 基于BP神经网络的浙北夏季降尺度降水预报方法的应用[J]. 大气科学学报, 2017, 40(3): 425-432. |
| [Li Yuejun, Guo Pinwen. Application of downscaling forecast for the North of Zhejiang precipitation in summer based on the BP neural network model[J]. Transactions of Atmospheric Sciences, 2017, 40(3): 425-432.] | |
| [23] | Vijaykumar P, Abhilash S, Santhosh K R, et al. Distribution of cloudiness and categorization of rainfall types based on INSAT IR brightness temperatures over Indian subcontinent and adjoining oceanic region during south west monsoon season[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2017, 161: 76-82. |
| [24] | 汪瑛, 冯业荣, 蔡锦辉, 等. 雷达定量降水动态分级Z-I关系估算方法[J]. 热带气象学报, 2011, 27(4): 601-608. |
| [Wang Ying, Feng Yerong, Cai Jinhui, et al. An approach for radar quantitative precipitation estimate based on categorical Z-I relations[J]. Journal of Tropical Meteorology, 2011, 27(4): 601-608.] | |
| [25] | 唐顺仙, 吕达仁, 何建新, 等. 天气雷达技术研究进展及其在我国天气探测中的应用[J]. 遥感技术与应用, 2017, 32(1): 1-13. |
| [Tang Shunxian, Lv Daren, He Jianxin, et al. Research of weather radar technology and application on Chinese weather observation[J]. Remote Sensing Technology and Application, 2017, 32(1): 1-13.] | |
| [26] | 黄勇, 何永健, 冯妍, 等. 基于多雷达和卫星的区域降水估测系统研究[J]. 人民长江, 2012, 43(19): 75-78. |
| [Huang Yong, He Yongjian, Feng Yan, et al. Study of regional precipitation estimation system based on multi-radar and satellite[J]. Yangtze River, 2012, 43(19): 75-78.] | |
| [27] | Liu N Q, Ren S L, Jiang J Y, et al. AI-based estimation of precipitation in the Tibetan Plateau using Multi-frame FY-4A satellite data[J]. International Journal of Remote Sensing, 2023, 44(20): 6523-6547. |
| [28] | 燕亚菲, 谈建国, 崔林丽, 等. 利用葵花8号(Himawari-8)高时空分辨率的红外亮温资料估计台风莫兰蒂的短时强降水及其演变[J]. 气象, 2019, 45(3): 318-329. |
| [Yan Yafei, Tan Jianguo, Cui Linli, et al. Estimating the Short-time severe precipitation of typhoon meranti and its evolution by using the infrared brightness temperature data from Himawari-8 satellite with high Spatio-temporal resolution[J]. Meteorological Monthly, 2019, 45(3): 318-329.] | |
| [29] | 赵文化, 单海滨. 基于红外窗区与水汽通道对流云团识别方法研究[J]. 气象, 2018, 44(6): 814-824. |
| [Zhao Wenhua, Shan Haibin. Study of convective cloud identification based on H2O/IRW observation[J]. Meteorological Monthly, 2018, 44(6): 814-824.] | |
| [30] | 任靖, 黄勇, 官莉, 等. 风云二号卫星资料在雷达降水估测中的应用[J]. 遥感信息, 2017, 32(3): 39-44. |
| [Ren Jing, Huang Yong, Guan Li, et al. Application of FY-2 satellite data in radar rainfall estimation[J]. Remote Sensing Information, 2017, 32(3): 39-44.] | |
| [31] | 李纯斌, 刘永峰, 吴静, 等. 基于BP神经网络和支持向量机的降水量空间插值对比研究——以甘肃省为例[J]. 草原与草坪, 2018, 38(4): 12-19. |
| [Li Chunbin, Liu Yongfeng, Wu Jing, et al. A contrastive study on the spatial interpolation for precipitation data using back propagation learning algorithm and support vector machine model—A case study of Gansu Province[J]. Grassland and Turf, 2018, 38(4): 12-19.] | |
| [32] | 年飞翔, 郭阳, 徐梅, 等. 基于BP神经网络的降水量估算模型在自动气象站降水量质量控制中的应用[J]. 气象与环境科学, 2022, 45(6): 101-107. |
| [Nian Feixiang, Guo Yang, Xu Mei, et al. Application of precipitation estimation model based on BP neural network in precipitation quality control of automatic weather station[J]. Meteorology and Environmental Science, 2022, 45(6): 101-107.] | |
| [33] | 王曙东, 惠建忠, 张国平, 等. 短时临近气象服务降水量等级标准研究[C]// 第34届中国气象学会年会S11创新驱动智慧气象服务—第七届气象服务发展论坛论文集. 中国气象学会, 中国气象局公共气象服务中心, 2017: 2. |
| [Wang Shudong, Hui Jianzhong, Zhang Guoping, et al. Research on the grade standards for short-term and nowcasting meteorological service precipitation[C]// Proceedings of the 34th Annual Meeting of China Meteorological Society, S11 Innovation-Driven Smart Meteorological Services-The Seventh Forum on Meteorological Service Development. China Meteorological Society, China Meteorological Administration Public Meteorological Service Center, 2017: 2.] | |
| [34] | 李超, 庄潇然, 马晨, 等. 基于卫星和雷达的融合雷达反射率方法研究及其在台风“烟花”观测中的应用[J]. 海洋预报, 2022, 39(5): 84-93. |
| [Li Chao, Zhuang Xiaoran, Ma Chen, et al. Research on radar reflectivity fusion method based on satellite and radar and its application in typhoon “Yan Hua” observation[J]. Marine Forecasts, 2022, 39(5): 84-93.] | |
| [35] | 曹亚楠, 魏合理, 戴聪明, 等. AIRS红外高光谱卫星数据反演卷云光学厚度和云顶高度[J]. 光谱学与光谱分析, 2015, 35(5): 1208-1213. |
| [Cao Yanan, Wei Heli, Dai Congming, et al. Retrieval of the optical thickness and cloud top height of cirrus clouds based on AIRS IR high spectral resolution data[J]. Spectroscopy and Spectral Analysis, 2015, 35(5): 1208-1213.] | |
| [36] | 赵世康, 穆振侠, 李刚, 等. 新疆大气可降水量时空演变特征及其与降水转化关系[J]. 干旱区研究, 2025, 42(2): 191-201. |
| [Zhao Shikang, Mu Zhenxia, Li Gang, et al. Spatial and temporal evolution characteristics of atmospheric precipitable water vapor in Xinjiang and its relationship with precipitation conversion[J]. Arid Zone Research, 2025, 42(2): 191-201.] | |
| [37] | 姚俊强, 陈静, 周桂香, 等. 新疆南部暴雨研究:科学认知与主要进展[J]. 沙漠与绿洲气象, 2024, 18(5): 1-8. |
| [Yao Junqiang, Chen Jing, Zhou Guixiang, et al. Research on heavy rainfall in southern Xinjiang: Scientific knowledge and research advances[J]. Desert and Oasis Meteorology, 2024, 18(5): 1-8.] |
/
| 〈 |
|
〉 |