Plant Ecology

Characteristics of the soil priority flow in the root zone of typical sand-fixing plants in the desert-oasis transition zone

  • YANG Penghua ,
  • HU Guanglu ,
  • LI Haochen ,
  • FAN Yalun
Expand
  • 1. School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, Gansu, China
    2. Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou 730070, Gansu, China

Received date: 2024-07-30

  Revised date: 2024-09-21

  Online published: 2025-01-17

Abstract

In this study, three typical sand-fixing plants in the desert-oasis transition zone were used as the research objects. To simulate water infiltration of 10 L, 15 L, and 20 L, respectively (simulating light rain, moderate rain, and heavy rain), the field staining tracer method and computer image processing technology were used. The distribution rules and characteristic parameters of the priority flow in the vertical and horizontal sections of the dyed images were analyzed, and the characteristic parameters were selected as evaluation indexes. The mean square decision method was used to determine the degree of development of the soil priority flow in the root zone of typical sand-fixation plants, which provided a reference for the restoration of sand-fixation vegetation and effective utilization of water resources in the desert-oasis transition zone. The results showed that (1) Soil preferential flow occurred in the root zone of sand-fixing plants in the desert-oasis transition zone, and the main types were funnel flow and finger flow. When infiltration water water was increased, the preferential flow occurred laterally. (2) Under the various conditions of water infiltration, the soil staining area ratio in the root zone of the three sand-fixing plants showed a nonlinear decrease with an increase in soil depth. The curve of the soil staining area ratio in the root zone of Haloxylon sacralis and Jujube sacralis showed an “S” shape, and the water infiltration was non-uniform. (3) The priority flow evaluation index PFI was from large to small: Haloxell (0.685), Sphaerophora sphaerophora (0.543), and Hippophora hippophobia (0.502). The degree of priority flow development of the soil in the root zone was the highest.

Cite this article

YANG Penghua , HU Guanglu , LI Haochen , FAN Yalun . Characteristics of the soil priority flow in the root zone of typical sand-fixing plants in the desert-oasis transition zone[J]. Arid Zone Research, 2025 , 42(1) : 127 -140 . DOI: 10.13866/j.azr.2025.01.12

References

[1] 牛健植, 余新晓, 张志强. 优先流研究现状及发展趋势[J]. 生态学报, 2006, 26(1): 231-243.
  [Niu Jianzhi, Yu Xinxiao, Zhang Zhiqiang. The present and future research on preferential flow[J]. Acta Ecologica Sinica, 2006, 26(1): 231-243. ]
[2] 彭海英, 李小雁, 崔步礼, 等. 土壤优势流研究方法综述[J]. 干旱气象, 2011, 29(2): 137-143.
  [Peng Haiying, Li Xiaoyan, Cui Buli, et al. Review on the study of preferential flow in soil[J]. Journal of Arid Meteorology, 2011, 29(2): 137-143. ]
[3] 盛丰, 张利勇, 吴丹. 土壤优先流模型理论与观测技术的研究进展[J]. 农业工程学报, 2016, 32(6): 1-10.
  [Sheng Feng, Zhang Liyong, Wu Dan. Review on research theories and observation techniques for preferential flow in unsaturated soil[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(6): 1-10. ]
[4] 高朝侠, 徐学选, 赵娇娜, 等. 土壤大孔隙流研究现状与发展趋势[J]. 生态学报, 2014, 34(11): 2801-2811.
  [Gao Chaoxia, Xu Xuexuan, Zhao Jiaona, et al. Review on macropore flow in soil[J]. Acta Ecologica Sinica, 2014, 34(11): 2801-2811. ]
[5] 史文娟, 汪志荣, 沈冰, 等. 非饱和土壤中指流的研究进展[J]. 西北农林科技大学学报(自然科学版), 2004, 32(7): 128-132.
  [Shi Wenjuan, Wang Zhirong, Shen Bing, et al. Review on the study of finger flow in unsaturated soil[J]. Journal of Northwest Sci-Tech University of Agriculture and Forestry, 2004, 32(7): 128-132. ]
[6] Hardie M, Lisson S, Doyle R, et al. Determining the frequency, depth and velocity of preferential flow by high frequency soil moisture monitoring[J]. Journal of Contaminant Hydrology, 2013, 144(1): 66-77.
[7] 朱美菲, 程金花. 永定河典型护岸植被土壤水分入渗特征及影响因素[J]. 土壤, 2023, 55(5): 1129-1137.
  [Zhu Meifei, Cheng Jinhua. Soil water infiltration characteristics and influencing factors of typical revegetation vegetation in Yongding River[J]. Soil, 2023, 55(5): 1129-1137. ]
[8] 王佩佩, 苏雪萌, 周正朝, 等. 黄土丘陵区典型植被群落坡面土壤优先流特征及其影响因素[J]. 水土保持学报, 2021, 35(5): 16-23.
  [Wang Peipei, Su Xuemeng, Zhou Zhengchao, et al. Characteristics and influencing factors of soil preferential flow on slope of typical vegetation communities in loess hilly region[J]. Journal of Soil and Water Conservation, 2021, 35(5): 16-23. ]
[9] 卢慧, 吕刚, 刘建华, 等. 辽西北风沙地不同林龄樟子松人工林土壤优先流特征[J]. 生态环境学报, 2022, 31(12): 2350-2357.
  [Lu Hui, Lyu Gang, Liu Jianhua, et al. Study on soil priority flow characteristics of Pinus sylvestris var. mongolica plantation at different ages in wind sandy land of Northwest Liaoning Province[J]. Ecology and Environmental Sciences, 2022, 31(12): 2350-2357. ]
[10] 魏虎伟, 程金花, 杜士才, 等. 利用染色示踪法研究四面山两种林地优先路径分布特征[J]. 水土保持通报, 2015, 35(2): 193-197.
  [Wei Huwei, Cheng Jinhua, Du Shicai, et al. A study on characteristics of preferential flow paths in two kinds of forest soil in Simian Mountains using dyeing tracer method[J]. Bulletin of Soil and Water Conservation, 2015, 35(2): 193-197. ]
[11] Bargués T A, Reese H, Almaw A, et al. The effect of trees on preferential flow and soil infiltrability in an agroforestry parkland in semiarid Burkina Faso[J]. Water Resources Research, 2014, 50(4): 3342-3354.
[12] 许垚涛. 模拟降雨条件下土壤大孔隙流对溶质迁移过程试验研究[D]. 西安: 西安理工大学, 2021.
  [Xu Yaotao. Experimental Study on the Effect of Soil Macropore Flow on the Solute Transport Process under Simulated Rainfall Conditions[D]. Xi’an: Xi’an University of Technology, 2021. ]
[13] 王发, 付智勇, 陈洪松, 等. 喀斯特洼地退耕和耕作土壤优先流特征[J]. 水土保持学报, 2016, 30(1): 111-116.
  [Wang Fa, Fu Zhiyong, Chen Hongsong, et al. Characteristics of preferential flow in soil of abandoned farmland and cultivated land of Karst depression[J]. Journal of Soil and Water Conservation, 2016, 30(1): 111-116. ]
[14] 褚卫军. 干湿循环作用下红黏土胀缩变形特性及裂缝扩展规律研究[D]. 贵阳: 贵州大学, 2015.
  [Chu Weijun. The Characteristics and Rule of Deformation Crack Propagation under the Wet and the Dry Cycles Shrink the Role of Red Clay Swelling[D]. Guiyang: Guizhou University, 2015. ]
[15] Leuther F, Schlüter S. Impact of freeze-thaw cycles on soil structure and soil hydraulic properties[J]. Soil, 2021, 7(1): 179-191.
[16] 陈斌, 鲁延芳, 占玉芳, 等. 荒漠绿洲过渡带土壤水分空间分布特征及对植被的影响[J]. 西北林学院学报, 2023, 38(2): 25-32.
  [Chen Bin, Lu Yanfang, Zhan Yufang, et al. Spatial distribution characteristics of soil moisture and its influence on vegetation in desert-oasis ecotone[J]. Journal of Northwest Forestry University, 2023, 38(2): 25-32. ]
[17] Suzanne E A, Stéphanie R, Allan J C. Quantifying preferential flow in soils: A review of different techniques[J]. Journal of Hydrology, 2009, 378(1): 179-204.
[18] 张勇勇, 富利, 赵文智, 等. 荒漠绿洲土壤优先流研究进展[J]. 中国沙漠, 2017, 37(6): 1189-1195.
  [Zhang Yongyong, Fu Li, Zhao Wenzhi, et al. A review of researches on preferential flow in desert-oasis region[J]. Journal of Desert Research, 2017, 37(6): 1189-1195. ]
[19] 钟晓菲, 张明军, 张宇, 等. 基于稳定同位素的兰州市南北两山土壤水入渗模式[J]. 干旱区研究, 2023, 40(11): 1744-1753.
  [Zhong Xiaofei, Zhang Mingjun, Zhang Yu, et al. Soil water infiltration process in north and south mountains of Lanzhou City based on stable isotope[J]. Arid Zone Research, 2023, 40(11): 1744-1753. ]
[20] 孙向阳. 土壤学[M]. 北京: 中国林业出版社, 2005: 145-156.
  [Sun Xiangyang. Pedology[M]. Beijing: China Forestry Publishing House, 2005: 145-156. ]
[21] 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000.
  [Bao Shidan. Soil and Agricultural Chemistry Analysis[M]. Beijing: China Agriculture Press, 2000. ]
[22] Van Schaik N. Spatial variability of infiltration patterns related to site characteristics in a semi-arid watershed[J]. Catena, 2009, 78(1): 36-47.
[23] 郭艳红. 基于均方差分析法的北京市土地资源承载力评价[J]. 资源与产业, 2011, 13(6): 62-66.
  [Guo Yanhong. Evaluation of the carrying capacity of land resources in Beijing based on mean square variance analysis[J]. Resources & Industries, 2011, 13(6): 62-66. ]
[24] Ritsema C J, Dekker L W, Hendricrx J, et al. Preferential flow mechanism in a water repellent sandy soil[J]. Water Resources Research, 1993, 31(1): 2183-2193.
[25] 李渊博, 李胜龙, 肖波, 等. 黄土高原藓结皮覆盖土壤导水性能和水流特征[J]. 干旱区研究, 2020, 37(2): 390-399.
  [Li Yuanbo, Li Shenglong, Xiao Bo, et al. Study of soil water permeability and water flow characteristics under moss crusts covering the Loess Plateau[J]. Arid Zone Research, 2020, 37(2): 390-399. ]
[26] 胡广录, 刘鹏, 李嘉楠, 等. 黑河中游绿洲边缘三种景观类型土壤水分动态特征及影响因素[J]. 干旱区研究, 2024, 41(4): 550-565.
  [Hu Guanglu, Liu Peng, Li Jianan, et al. Characteristics of soil moisture dynamics and influencing factors of three landscape types at the oasis edge in the middle reaches of the Heihe River[J]. Arid Zone Research, 2024, 41(4): 550-565. ]
[27] 张建丰, 王文焰. 砂层在黄土中发生指流条件的试验研究[J]. 农业工程学报, 2008, 24(3): 82-86.
  [Zhang Jianfeng, Wang Wenyan. Experimental study of finger flow occurrence in loess soil[J]. Transactions of the Chinese Society of Agricultural Engineering, 2008, 24(3): 82-86. ]
[28] 孙启兴, 杨晓东, 李浡睿, 等. 水力性状对荒漠植物群落物种多度分布格局的影响[J]. 干旱区研究, 2023, 40(3): 412-424.
  [Sun Qixing, Yang Xiaodong, Li Borui, et al. Effects of hydraulic traits on the species abundance distribution pattern of desert plant communities[J]. Arid Zone Research, 2023, 40(3): 412-424. ]
[29] 孙程鹏, 赵文智. 土地利用对河西走廊荒漠绿洲区土壤入渗的影响[J]. 中国沙漠, 2021, 41(6): 148-156.
  [Sun Chengpeng, Zhao Wenzhi. Effect of land use on soil infiltration in the desert-oasis of Hexi Corridor[J]. Journal of Desert Research, 2021, 41(6): 148-156. ]
[30] 张斌, 李从娟, 易光平, 等. 梭梭和头状沙拐枣形态及生理生化特性对干旱胁迫的响应[J]. 干旱区研究, 2024, 41(7): 1177-1184.
  [Zhang Bin, Li Congjuan, Yi Guangping, et al. Physiological, biochemical and morphological responses of Haloxylon ammodendron and Calligonum caput-medusae to drought stress[J]. Arid Zone Research, 2024, 41(7): 1177-1184. ]
[31] 李鸿儒, 王继和, 蒋志荣, 等. 白刺沙包发育过程的土壤水分与根系生物量的关系[J]. 甘肃农业大学学报, 2010, 45(6): 133-138.
  [Li Hongru, Wang Jihe, Jiang Zhirong, et al. Relationship between soil moisture and root biomass during developmental process of Nitraria tangutorum nebkha[J]. Journal of Gansu Agricultural University, 2010, 45(6): 133-138. ]
[32] 刘宇娇, 王国华. 河西走廊荒漠绿洲过渡带沙丘不同生境沙拐枣种群扩张特征研究[J]. 中国农学通报, 2020, 36(6): 42-47.
  [Liu Yujiao, Wang Guohua. Calligonum mongolicum in different habitats of sand dunes in the desert-oasis ecotone of Hexi Corridor: Population expansion characteristics[J]. Chinese Agricultural Science Bulletin, 2020, 36(6): 42-47. ]
[33] 宋艺琳, 毕华兴, 赵丹阳, 等. 晋西黄土区不同入渗水量下刺槐林地优先流特征[J]. 土壤, 2024, 56(2): 448-456.
  [Song Yilin, Bi Huaxing, Zhao Danyang, et al. Characteristic of preferential flow in Robinia pseudoacacia forests in loess plateau in western Shanxi Province under different infiltration conditions[J]. Soils, 2024, 56(2): 448-456. ]
[34] 管凝, 程金花, 侯芳, 等. 西南喀斯特地区典型林分土壤优先流特征及影响因素[J]. 应用生态学报, 2023, 34(1): 31-38.
  [Guan Ning, Cheng Jinhua, Hou Fang, et al. Characteristics and influencing factors of soil preferential flow in typical stands of Karst areas in Southwest China[J]. Chinese Journal of Applied Ecology, 2023, 34(1): 31-38. ]
[35] 赵思远, 苏辉东, 贾仰文, 等. 北方土石山区典型坡面优先流特征研究[J]. 水土保持学报, 2018, 32(6): 9-15.
  [Zhao Siyuan, Su Huidong, Jia Yangwen, et al. Characteristics of preferential flow on typical slope in northern rocky mountain area[J]. Journal of Soil and Water Conservation, 2018, 32(6): 9-15. ]
[36] 赵晨光, 李慧瑛, 鱼腾飞, 等. 腾格里沙漠东北缘人工植被对土壤物理性质的影响[J]. 干旱区研究, 2022, 39(4): 1112-1121.
  [Zhao Chenguang, Li Huiying, Yu Tengfei, et al. Effects of artificial vegetation construction on soil physical properties in the northeastern edge of Tengger Desert[J]. Arid Zone Research, 2022, 39(4): 1112-1121. ]
[37] 李嘉楠, 周成乾, 胡广录, 等. 荒漠-绿洲过渡带典型固沙植物根区土壤大孔隙特征及影响因素[J]. 干旱区研究, 2024, 41(12): 2015-2026.
  [Li Jianan, Zhou Chenggan, Hu Guanglu, et al. Characteristics and influencing factors of soil macropores in the root zone of sand-fixing plants in the desert-oasis transition zone[J]. Arid Zone Research, 2024, 41(12): 2015-2026. ]
[38] 石辉, 陈凤琴, 刘世荣. 岷江上游森林土壤大孔隙特征及其对水分出流速率的影响[J]. 生态学报, 2005, 25(3): 507-512.
  [Shi Hui, Chen Fengqin, Liu Shirong. Macropores properties of forest soil and its influence on water effluent in the upper reaches of Minjiang River[J]. Acta Ecologica Sinica, 2005, 25(3): 507-512. ]
[39] 张东旭, 张洪江, 程金花. 基于多指标评价和分形维数的坡耕地优先流定量分析[J]. 农业机械学报, 2017, 48(12): 214-220, 277.
  [Zhang Dongxu, Zhang Hongjiang, Cheng Jinhua. Quantitative analysis of preferential flow in slope farmland soils based on multi-index evaluation and fractional dimension[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(12): 214-220, 277. ]
[40] 侯芳, 程金花, 祁生林, 等. 重庆四面山不同林地类型优先流特征及染色形态定量评价[J]. 西南林业大学学报: 自然科学版, 2021, 41(2): 107-117.
  [Hou Fang, Cheng Jinhua, Qi Shenglin, et al. Characteristics of preferential flow and quantitative evaluation of dyeing morphology in different forest types on Simianshan Mountain in Chongqing[J]. Journal of Southwest Forestry University (Natural Sciences), 2021, 41(2): 107-117. ]
Outlines

/