Weather and Climate

Numerical simulation and diagnosis of a severe dust storm event in Northwest China

  • CAO Yidan ,
  • MA Minjin ,
  • KANG Guoqiang ,
  • CHEN Ran
Expand
  • Key Laboratory of Drought Climate Change and Disaster Reduction in Gansu Province, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, Gansu, China

Received date: 2024-05-09

  Revised date: 2024-07-03

  Online published: 2025-01-17

Abstract

Dust storms are a major weather hazard in arid and semiarid regions, causing significant harm to human health and welfare and productivity. This study examined a severe dust storm event in northwest China using surface observation data from the National Meteorological Information Center, MODIS satellite data, and urban air quality data from March 18 to 23, 2023. The study combined the HYSPLIT backward trajectory model and the WRF-Chem atmospheric chemistry model to examine the dust source and impact range, focusing on the mechanisms behind the severe dust storm at Zhangye, a central site along the transport path. The main findings were that the dust storm affected much of northern China in phases, with dust emissions occurring in distinct regions on March 19, 20, and 21, each with unique transport ranges and impact areas. Dust in the Hexi Corridor primarily originated from Jiuquan. WRF-Chem simulations showed that the highest PM10 concentration occurred at Zhangye Station, reaching 6966.7 μg·m-3 The dust event in Zhangye originated from upstream dust transport and local dust emission. First, near-surface intense northwesterly winds over 16 m·s-1 near Jiuquan, under unstable atmospheric conditions, triggered upward movement, which lifted dust particles to high altitudes and transported them downstream, where they settled around 3-4 km above Zhangye. Second, before the arrival of upstream dust, Zhangye’s lower atmosphere exhibited instability, and the convergence of strong surface winds and wind direction triggered local dust uplift, further intensifying the dust storm.

Cite this article

CAO Yidan , MA Minjin , KANG Guoqiang , CHEN Ran . Numerical simulation and diagnosis of a severe dust storm event in Northwest China[J]. Arid Zone Research, 2025 , 42(1) : 1 -13 . DOI: 10.13866/j.azr.2025.01.01

References

[1] 王式功, 董光荣, 陈惠忠, 等. 沙尘暴研究的进展[J]. 中国沙漠, 2000, 20(4): 5-12.
  [Wang Shigong, Dong Guangrong, Chen Huizhong, et al. Advances in studying sand-dust storms of China[J]. Journal of Desert Research, 2000, 20(4): 5-12. ]
[2] Zhang X Y, Gong S L, Zhao T L, et al. Sources of Asian dust and role of climate change versus desertification Asian dust emission[J]. Geophysical Research Letters, 2003, 30(24): 1-4.
[3] Yang J H, Zhang Q, Lu G Y, et al. Climate transition from warm-dry to warm-wet in eastern northwest China[J]. Atmosphere, 2021, 12(12): 548.
[4] Yao J Q, Mao W Y, Chen J, et al. Recent signal and impact of wet-to-dry climatic shift in Xinjiang, China[J]. Journal of Geographical Sciences, 2021, 31(21): 1283-1298.
[5] Deng H X, Tang Q H, Yun X B, et al. Wetting trend in Northwest China reversed by warmer temperature and drier air[J]. Journal of Hydrology, 2022, 613(74): 128435.
[6] Liu X M, Song H Q, Lei T J, et al. Effects of natural and anthropogenic factors and their interactions on dust events in northern China[J]. CATENA, 2021, 196(48): 104919.
[7] Yin Z C, Zhou B T, Duan M K, et al. Climate extremes become increasingly fierce in China[J]. The Innovation, 2023, 4(2): 100406.
[8] Wang Y, Yu H J, Li L, et al. Long-term trend of dust event duration over Northwest China[J]. The Science of The Total Environment, 2024, 951(53): 175819.
[9] Yu H J, Wang Y, Yuan L L, et al. Longer dust events over Northwest China from 2015 to 2022[J]. Atmospheric Research, 2024, 304(39): 107365.
[10] Gui K, Yao W R, Che H Z, et al. Record-breaking dust loading during two mega dust storm events over northern China in March 2021: Aerosol optical and radiative properties and meteorological drivers[J]. Atmospheric Chemistry and Physics, 2022, 22(12): 7905-7932.
[11] 李岩瑛, 杨晓玲, 王式功. 河西走廊东部近50a沙尘暴成因、危害及防御对策[J]. 中国沙漠, 2002, 22(3): 82-86.
  [Li Yanying, Yang Xiaoling, Wang Shigong. Causes, impacts, and mitigation strategies of sandstorms in the eastern Hexi Corridor over the past 50 years[J]. Journal of Desert Research, 2002, 22(3): 82-86. ]
[12] 王金玉. 沙尘污染对人群呼吸系统慢性损伤的初步研究[D]. 兰州: 兰州大学, 2015.
  [Wang Jinyu. A Preliminary Study on Chronic Adverse Health Effects of Dust Pollution on Human Respiratory System[D]. Lanzhou: Lanzhou University, 2015. ]
[13] 徐冉, 张碧辉, 安林昌, 等. 2000—2021年中国沙尘传输路径特征及气象成因分析[J]. 中国环境科学, 2023, 43(9): 4450-4458.
  [Xu Ran, Zhang Bihui, An Linchang, et al. Analysis of sand and dust storm transport paths characteristics and meteorological causes in China from 2000 to 2021[J]. China Environmental Science, 2023, 43(9): 4450-4458. ]
[14] Igarashi Y, Inomata Y, Aoyama M, et al. Possible change in Asian dust source suggested by atmospheric anthropogenic radionuclides during the 2000s[J]. Atmospheric Environment, 2009, 43(18): 2971-2980.
[15] Lee E H, Sohn B J. Recent increasing trend in dust frequency over Mongolia and Inner Mongolia regions and its association with climate and surface condition change[J]. Atmospheric Environment, 2011, 45(27): 4611-4616.
[16] 吕彦勋, 赵洪民, 王小军, 等. 中国西北城市沙尘天气变化特征——以兰州为例[J]. 干旱区研究, 2024, 41(7): 1112-1119.
  [Lyu Yanxun, Zhao Hongmin, Wang Xiaojun, et al. Dust weather changes in Northwest Chinese cities: Lanzhou as a case study[J]. Arid Zone Research, 2024, 41(7): 1112-1119. ]
[17] 李耀辉, 沈洁, 赵建华, 等. 地形对民勤沙尘暴发生发展影响的模拟研究——以一次特强沙尘暴为例[J]. 中国沙漠, 2014, 34(3): 849-860.
  [Li Yaohui, Shen Jie, Zhao Jianhua, et al. Simulation of terrain effect to the development of sandstorm in Minqin—take a heavy sandstorm for example[J]. Journal of Desert Research, 2014, 34(3): 849-860. ]
[18] 李岩瑛, 张春燕, 张爱萍, 等. 河西走廊春季沙尘暴大气边界层垂直结构特征[J]. 气象, 2022, 48(9): 1171-1185.
  [Li Yanying, Zhang Chunyan, Zhang Aiping, et al. Vertical structure characteristics of atmospheric boundary layer in spring sandstorm over Hexi Corridor[J]. Meteorological Monthly, 2022, 48(9): 1171-1185. ]
[19] 徐鑫强, 王鑫, 黄建平. 张掖及兰州榆中地区沙尘气溶胶粒子谱分布的观测研究[J]. 高原气象, 2011, 30(1): 208-216.
  [Xu Xinqiang, Wang Xin, Huang Jianping. Observational study on the particle size distribution of sand aerosol in Zhangye and Yuzhong of Lanzhou[J]. Plateau Meteorology, 2011, 30(1): 208-216. ]
[20] 李红英, 李岩瑛, 王云鹏, 等. 河西走廊西部沙尘暴时空差异及其动力分析[J]. 干旱区资源与环境, 2022, 36(10): 104-112.
  [Li Hongying, Li Yanying, Wang Yunpeng, et al. Temporal and spatial differences and dynamic analysis of sandstorms in the west of Hexi Corridor[J]. Journal of Arid Land Resources and Environment, 2022, 36(10): 104-112. ]
[21] 李岩瑛, 张强, 陈英, 等. 中国西北干旱区沙尘暴源地风沙大气边界层特征[J]. 中国沙漠, 2014, 34(1): 206-214.
  [Li Yanying, Zhang Qiang, Chen Ying, et al. Characteristics of the atmospheric boundary layer of sandstorms in arid regions of Northwest China[J]. Journal of Desert Research, 2014, 34(1): 206-214. ]
[22] 康丽泰, 陈思宇. 中国北方一次沙尘天气过程的数值模拟[J]. 中国沙漠, 2017, 37(2): 321-331.
  [Kang Litai, Chen Siyu. Numerical modeling of a dust storm process in northern China[J]. Journal of Desert Research, 2017, 37(2): 321-331. ]
[23] 魏倩, 隆霄, 赵建华, 等. 边界层参数化方案对一次西北地区沙尘天气过程影响的数值模拟研究[J]. 干旱区研究, 2021, 38(1): 163-177.
  [Wei Qian, Long Xiao, Zhao Jianhua, et al. Impact of boundary layer parameterization schemes on the simulation of a dust event over Northwest China[J]. Arid Zone Research, 2021, 38(1): 163-177. ]
[24] Chen Y, Chen S Y, Zhou J, et al. A super dust storm enhanced by radiative feedback[J]. npj Climate and Atmospheric Science, 2023, 6(7): 1-11.
[25] 陈俊言, 贯雅雯, 张越, 等. 戈壁沙漠沙尘向青藏高原传输路径和传输机制:以2020年4月一次沙尘事件为例[J]. 中国沙漠, 2024, 44(3): 158-171.
  [Chen Junyan, Guan Yawen, Zhang Yue, et al. Transport pathways and mechanisms of dust from the Gobi Desert to the Tibetan Plateau: A case study of a dust storm in April 2020[J]. Journal of Desert Research, 2024, 44(3): 158-171. ]
[26] 周旭, 张镭, 郭琪, 等. 强沙尘暴的数值模拟及PM10浓度的时空变化分析[J]. 中国环境科学, 2017, 37(1): 1-12.
  [Zhou Xu, Zhang Lei, Guo Qi, et al. Numerical simulation of a strong dust storm and the spatial-temporal distribution of PM10 concentration[J]. China Environmental Science, 2017, 37(1): 1-12. ]
[27] 尹志聪, 霍芊伊, 麻晓晴, 等. 触发2023年春季中国北方沙尘暴的沙源累积和天气扰动机制[J]. 大气科学学报, 2023, 46(3): 321-331.
  [Yin Zhicong, Huo Qianyi, Ma Xiaoqing, et al. Mechanisms of dust source accumulation and synoptic disturbance triggering the 2023 spring sandstorm in northern China[J]. Transactions of Atmospheric Sciences, 2023, 46(3): 321-331. ]
[28] Qor-El-Aine A, Béres A, Géczi G. Dust storm simulation over the sahara Desert (Moroccan and Mauritanian regions) using HYSPLIT[J]. Atmospheric Science Letters, 2021, 23(12): 1-13.
[29] 申彦波, 沈志宝, 汪万福. 2001年春季中国北方大气气溶胶光学厚度与沙尘天气[J]. 兰州大学学报(自然科学版), 2003, 47(2): 185-190.
  [Shen Yanbo, Shen Zhibao, Wang Wanfu. Atmospheric aerosol optical thickness and dusty weather in northern China in spring of 2001[J]. Journal of Lanzhou University (Natural Sciences), 2003, 47(2): 185-190. ]
[30] 杨晓玲, 李岩瑛, 陈静, 等. 河西走廊罕见强沙尘天气传输及其过程持续特征[J]. 干旱区地理, 2022, 45(5): 1415-1425.
  [Yang Xiaoling, Li Yanying, Chen Jing, et al. Transmission of rare strong dust and its process continuous characteristics in Hexi Corridor[J]. Arid Land Geography, 2022, 45(5): 1415-1425. ]
[31] 陈思宇, 贯雅雯, 赵丹, 等. 东亚沙尘气候效应对地面温度日较差影响的数值模拟[J]. 中国沙漠, 2022, 42(3): 127-138.
  [Chen Siyu, Guan Yawen, Zhao Dan, et al. Numerical simulation of the impact of East Asian dust climate effects on diurnal temperature range at the surface[J]. Journal of Desert Research, 2022, 42(3): 127-138. ]
[32] 吕艳丽, 刘连友, 屈志强, 等. 中国北方典型沙尘天气特征研究[J]. 中国沙漠, 2012, 32(2): 447-453.
  [Lü Yanli, Liu Lianyou, Qu Zhiqiang, et al. Characteristics of dust storm weather in northern China[J]. Journal of Desert Research, 2012, 32(2): 447-453. ]
Outlines

/