Seed germination and seedling growth of typical sand-fixing plants in response to soil moisture
Received date: 2023-11-04
Revised date: 2024-01-02
Online published: 2024-05-29
Seed germination and the seedling growth of sand-fixing plants are decisive aspects of land desertification management, and soil moisture is the main limiting factor affecting these aspects. In this study, we compared and analyzed the seed germination of three sand-fixing plants under different moisture gradients (4%, 6%, 8%, 10%, 15%, 20%, and 25%) in an indoor potting experiment using Hedysarum scoparium, Caragana korshinskii, and Artemisia desertorum to investigate the response of seed germination and seedling growth of sand-fixing plants to changes soil in moisture. The results showed that: (1) significant differences (P<0.05) were observed in the seed germination characteristics of the three sand-fixing plants as the soil moisture increased. The germination rates tended to increase and then decrease as the soil moisture increased. C. scoparium had the highest germination rate at 15% and 20% soil moisture (83.00% in both); C. korshinskii had the highest germination rate at 10% soil moisture (73.00%); and the seed germination rate of A. desertorum reached the maximum value of 77.50% at 15% soil moisture, and then slowly decreased, although the change was not significant. (2) The leaf area and root length of the three plants showed tended to first increase and then decrease as the soil moisture increased, and the specific leaf area and root:crown ratio tended to decrease and then increase. (3) The highest biomass of C. scoparium, C. korshinski, and A. desertorum seedlings was 0.0733 g, 0.1142 g, and 0.0363 g at 10%, 8%, and 20% soil moisture, respectively, and the aboveground biomass was significantly higher than the belowground biomass (P<0.05), although the allocation of belowground biomass by C. korshinski seedlings was higher than that of C. scoparium and A. desertorum. (4) The SOD activity, POD activity, CAT activity, Pro content, SS content, and Chl content of the three sand-fixing plants tended to increase and then decrease as the soil moisture increased, whereas the MDA content, membrane permeability, and relative water content tended to decrease and then increase. Based on the above results, it was concluded that the three sand-fixing plants of C. scoparium, C. korshinski, and A. desertorum had the best seedling growth at 15%, 8% and 8% soil moisture, respectively, through the analysis of the affiliation function method. Therefore, when these three sand-fixing plants are used for vegetation restoration, the changes in soil moisture caused by rainfall conditions should be fully considered in addition to the seeds’ own traits to improve the seedling emergence rate and the success of seedling growth.
Key words: soil moisture stress; pot experiment; seed germination; seedling growth; phenotype
YANG Zhuqing , WANG Lei , ZHANG Xue , SHEN Jianxiang , ZHANG Yijing , LI Xinyu , ZHANG Bo , NIU Jinshuai . Seed germination and seedling growth of typical sand-fixing plants in response to soil moisture[J]. Arid Zone Research, 2024 , 41(5) : 830 -842 . DOI: 10.13866/j.azr.2024.05.11
[1] | 李新荣, 赵洋, 回嵘, 等. 中国干旱区恢复生态学研究进展及趋势评述[J]. 地理科学进展, 2014, 33(11): 1435-1443. |
[Li Xinrong, Zhao Yang, Hui Rong, et al. Progress and trend of development of restoration ecology research in the arid regions of China[J]. Progress in Geography, 2014, 33(11): 1435-1443.] | |
[2] | Wilczek A M, Burghardt L T, Cobb A R, et al. Genetic and physiological bases for phenological responses to current and predicted climates[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365(1555): 3129-3147. |
[3] | Donohue K, Rafael R, Burghardt L, et al. Germination, Postgermination adaptation, and species ecological ranges[J]. Annual Review of Ecology and Systematics, 2010, 41(1): 293-319. |
[4] | Burghardt L T, Metcalf C J E, Wilczek A M, et al. Modeling the influence of genetic and environmental variation on the expression of plant life cycles across landscapes[J]. The American Naturalist, 2015, 185(2): 212-227. |
[5] | 单立山, 李毅, 张正中, 等. 人工模拟降雨格局变化对红砂种子萌发的影响[J]. 生态学报, 2017, 37(16): 5382-5390. |
[Shan Lishan, Li Yi, Zhang Zhengzhong, et al. Effects of simulated precipitation change on seed germination of Reaumuria soongorica[J]. Acta Ecologica Sinica, 2017, 37(16): 5382-5390.] | |
[6] | 张军红, 吴波. 干旱、半干旱地区土壤水分研究进展[J]. 中国水土保持, 2012, 4(2): 40-43, 68. |
[Zhang Junhong, Wu Bo. Research progress of soil moisture of arid and semi-arid regions[J]. Soil and Water Conservation in China, 2012, 4(2): 40-43, 68.] | |
[7] | 单立山, 李毅, 段桂芳, 等. 模拟降雨变化对两种荒漠植物幼苗生长及生物量分配的影响[J]. 干旱区地理, 2016, 39(6): 1267-1274. |
[Shan Lishan, Li Yi, Duan Guifang, et al. Effects of simulated precipitation on seedling growth and biomass allocation in two tree species in the arid lands of Northwest China[J]. Arid Land Geography, 2016, 39(6): 1267-1274.] | |
[8] | 董蕾, 李吉跃. 植物干旱胁迫下水分代谢、碳饥饿与死亡机理[J]. 生态学报, 2013, 33(18): 5477-5483. |
[Dong Lei, Li Jiyue. Relationship among drought, hydraulic metabolic, carbon starvation and vegetation mortality[J]. Acta Ecologica Sinica, 2013, 33(18): 5477-5483.] | |
[9] | 李清雪, 贾志清, 何凌仙子, 等. 降雨格局对高寒沙地中间锦鸡儿幼苗生长的影响[J]. 干旱区资源与环境, 2022, 36(4): 120-125. |
[Li Qingxue, Jia Zhiqing, He Lingxianzi, et al. Effects of precipitation patterns on the growth of Caragana intermedia seedlings in alpine sandy land[J]. Journal of Arid Land Resources and Environment, 2022, 36(4): 120-125.] | |
[10] | 纪童, 蒋齐, 王占军, 等. 7种禾本科牧草抗旱性研究与评价[J]. 草业学报, 2022, 31(7): 144-156. |
[Ji Tong, Jiang Qi, Wang Zhanjun, et al. An evaluation of drought resistance of seven Poaceous forages[J]. Acta Prataculturae Sinica, 2022, 31(7): 144-156.] | |
[11] | She W W, Bai Y X, Zhang Y Q, et al. Plasticity in meristem allocation as an adaptive strategy of a desert shrub under contrasting environments[J]. Frontiers in Plant Science, 2017, 8: 1933. |
[12] | 刘冠志, 李青丰, 贺威, 等. 毛乌素沙地3种主要植物群落的阻沙效益[J]. 水土保持通报, 2016, 36(2): 234-238. |
[Liu Guanzhi, Li Qingfeng, He Wei, et al. Efficiency of sand resistance of three main plant communities in Mu Us Sandland[J]. Bulletin of Soil and Water Conservation, 2016, 36(2): 234-238.] | |
[13] | 于双, 李小伟, 王瑞霞, 等. 灵武白芨滩不同年限柠条固沙林林下草本群落演替规律及机制[J]. 草业学报, 2024, 33(3): 13-23. |
[Yu Shuang, Li Xiaowei, Wang Ruixia, et al. Succession mechanism and dynamics in artificial Caragana korshinskii sand-fixing forests of different ages in Baijitan of Lingwu[J]. Acta Prataculturae Sinica, 2024, 33(3): 13-23.] | |
[14] | Bai Yuxuan, Zhang Yuqing, MichaletI Richard, et al. Responses of different herb life-history groups to a dominant shrub species along a dune stabilization gradient[J]. Basic and Applied Ecology, 2019, 38: 1-12. |
[15] | 邢海福, 邢存旺, 马增旺, 等. 黄羊滩人工固沙林自然更新的研究[J]. 河北林业科技, 2015(3): 12-15. |
[Xing Haifu, Xing Cunwang, Ma Zengwang, et al. Research on natural regeneration of artificial sand fixation forest in Huangyangtan[J]. The Journal of Hebei Forestry Science and Technology, 2015(3): 12-15.] | |
[16] | 白梦杰. 十种荒漠植物种子萌发与出苗的生态特性研究[D]. 兰州: 兰州大学, 2019. |
[Bai Mengjie. Ecological Characteristics of Seed Germination and Seedling Emergence of Ten Desert Plant Species[D]. Lanzhou: Lanzhou University, 2019.] | |
[17] | 李易珺, 郭树江, 杨自辉. 盐、干旱胁迫对沙蒿种子萌发与幼苗生理特性的影响[J]. 草原与草坪, 2023, 43(5): 113-119. |
[Li Yijun, Guo Shujiang, Yang Zihui. Effect of salt and drought stresses on seed germination and seedling physiological characteristics of Artemisia desertorum[J]. Grassland and Turf, 2023, 43(5): 113-119.] | |
[18] | 闫兴富, 周立彪, 思彬彬, 等. 不同温度下PEG-6000模拟干旱对柠条锦鸡儿种子萌发的胁迫效应[J]. 生态学报, 2016, 36(7): 1989-1996. |
[Yan Xingfu, Zhou Libiao, Si Binbin, et al. Stress effects of simulated drought by polyethylene glycol on the germination of Caragana korshinskii Kom. seeds under different temperature conditions[J]. Acta Ecologica Sinica, 2016, 36(7): 1989-1996.] | |
[19] | 杨慧, 张泽, 张兰, 等. 柠条种子萌发对不同温度和土壤含水量的响应[J]. 干旱区研究, 2022, 39(6): 1875-1884. |
[Yang Hui, Zhang Ze, Zhang Lan, et al. Responses of seed germination of Caragana korshinskii to different temperatures and soil water content[J]. Arid Zone Research, 2022, 39(6): 1875-1884.] | |
[20] | 刘玲, 孟淑春. 2012版《国际种子检验规程》修订通报[J]. 核农学报, 2012, 26(5): 762-763. |
[Liu Ling, Meng Shuchun. Notification of the revision of the 2012 edition of the 《International Seed Testing Regulations》[J]. Journal of Nuclear Agricultural Sciences, 2012, 26(5): 762-763.] | |
[21] | 王学奎, 黄见良. 植物生理生化实验原理与技术[M]. 北京: 高等教育出版社, 2015. |
[Wang Xuekui, Huang Jianliang. Principles and Techniques of Plant Physiology and Biochemistry Experiments[M]. Beijing: Higher Education Press, 2015.] | |
[22] | 徐新娟, 李勇超. 2种植物相对电导率测定方法比较[J]. 江苏农业科学, 2014, 42(7): 311-312. |
[Xu Xinjuan, Li Yongchao. Comparison of two methods for detection of relative conductivity of plant[J]. Jiangsu Agricultural Sciences, 2014, 42(7): 311-312.] | |
[23] | Zhu Y, Yang X, Baskin C C, et al. Effects of amount and frequency of precipitation and sand burial on seed germination, seedling emergence and survival of the dune grass Leymus secalinus in semiarid China[J]. Plant Soil, 2014, 374(1-2): 399-409. |
[24] | 杨景宁, 王彦荣. PEG模拟干旱胁迫对四种荒漠植物种子萌发的影响[J]. 草业学报, 2012, 21(6): 23-29. |
[Yang Jingning, Wang Yanrong. Effects of drought stress simulated by PEG on seed germination of four desert plant species[J]. Acta Prataculturae Sinica, 2012, 21(6): 23-29.] | |
[25] | 王慧慧, 王普昶, 赵钢, 等. 干旱胁迫下白刺花种子大小与萌发对策[J]. 生态学报, 2016, 36(2): 335-341. |
[Wang Huihui, Wang Puchang, Zhao Gang, et al. Seed size and germination strategy of Sophora davidii under drought stress[J]. Acta Ecologica Sinica, 2016, 36(2): 335-341.] | |
[26] | 韩文娟, 王铁娟, 玉昉永. 5种蒿属沙生半灌木种子萌发耐旱性研究[J]. 种子, 2015, 34(2): 42-45. |
[Han Wenjuan, Wang Tiejuan, Yu Fangyong. A Study on drought resistance of five sand plants of artemisia seeds[J]. Seed, 2015, 34(2): 42-45.] | |
[27] | Ramírez-valiente J A, López R, Hipp A L, et al. Correlated evolution of morphology, gas exchange, growth rates and hydraulics as a response to precipitation and temperature regimes in oaks (Quercus)[J]. New Phytologist, 2020, 227(3): 794-809. |
[28] | 李瑞, 单立山, 解婷婷, 等. 典型荒漠灌木叶片功能性状特征随降水梯度的变化研究[J]. 干旱区研究, 2023, 40(3): 425-435. |
[Li Rui, Shan Lishan, Xie Tingting, et al. Variation in the leaf functional traits of typical desert shrubs under precipitation gradient[J]. Arid Zone Research, 2023, 40(3): 425-435.] | |
[29] | 马丽, 单立山, 解婷婷, 等. 基于同质园实验的两种典型荒漠植物叶片功能性状变异研究[J]. 草地学报, 2022, 30(3): 701-711. |
[Ma Li, Shan Lishan, Xie Tingting, et al. Variation in plant functional traits of two typical desert plant based on common garden experiment[J]. Acta Agrestia Sinica, 2022, 30(3): 701-711.] | |
[30] | 徐梦琦, 高艳菊, 张志浩, 等. 骆驼刺叶片和根系主要功能性状对水分胁迫的适应[J]. 草业科学, 2021, 38(8): 1559-1569. |
[Xu Mengqi, Gao Yanju, Zhang Zhihao, et al. Adaptation of the main functional trait of Alhagi sparsifolia leaves and roots to soil water stress[J]. Grass Science, 2021, 38(8): 1559-1569.] | |
[31] | 孙岩, 何明珠, 王立. 降水控制对荒漠植物群落物种多样性和生物量的影响[J]. 生态学报, 2018, 38(7): 2425-2433. |
[Sun Yan, He Mingzhu, Wang Li. Effects of precipitation control on plant diversity and biomass in a desert region[J]. Journal of Ecology, 2018, 38(7): 2425-2433.] | |
[32] | 陈昱东, 吕光辉, 张磊, 等. 荒漠植物功能性状和生物量对土壤水盐环境的响应[J]. 新疆农业科学, 2022, 59(10): 2574-2584. |
[Chen Yudong, Lv Guanghui, Zhang Lei, et al. Effects of functional traits of desert plants on biomass in arid regions with different soil water-salt gradients[J]. Xinjiang Agricultural Sciences, 2022, 59(10): 2574-2584.] | |
[33] | 杨秀静, 黄玫, 王军邦, 等. 青藏高原草地地下生物量与环境因子的关系[J]. 生态学报, 2013, 33(7): 2032-2042. |
[Yang Xiujing, Huang Mei, Wang Junbang, et al. Belowground biomass in Tibetan grasslands and its environmental control factors[J]. Acta Ecologica Sinica, 2013, 33(7): 2032-2042.] | |
[34] | 王国华, 赵文智. 不同沙埋深度对当年生柠条锦鸡儿种子萌发及幼苗生长的影响[J]. 干旱区地理, 2016, 39(1): 95-103. |
[Wang Guohua, Zhao Wenzhi. Effects of sand-burying on seed germination and seedling growth of Caragana korshinskii Kom.[J]. Arid Land Geography, 2016, 39(1): 95-103.] | |
[35] | 李文娆, 张岁岐, 丁圣彦, 等. 干旱胁迫下紫花苜蓿根系形态变化及与水分利用的关系[J]. 生态学报, 2010, 30(19): 5140-5150. |
[Li Wenrao, Zhang Suiqi, Ding Shengyan, et al. Root morphological variation and water use in alfalfa under drought stress[J]. Acta Ecologica Sinica, 2010, 30(19): 5140-5150.] | |
[36] | 王君, 及利, 张忠辉, 等. 不同土壤基质下水分胁迫对蒙古栎幼苗表型可塑性的影响[J]. 生态学杂志, 2019, 38(1): 51-59. |
[Wang Jun, Ji Li, Zhang Zhonghui, et al. Effects of water stress on phenotypic plasticity of Quercus mongolica seedlings grown in two soil substrates[J]. Chinese Journal of Ecology, 2019, 38(1): 51-59.] | |
[37] | 张寅媛, 刘英, 白龙. 干旱胁迫对4种景天科植物生理生化指标的影响[J]. 草业科学, 2014, 8(4): 724-731. |
[Zhang Yinyuan, Liu Ying, Bai Long. Effect of drought stress on physiological indexes of 4 Crassulaceae species[J]. Pratacultural Science, 2014, 8(4): 724-731.] | |
[38] | 霍红. 河西地区五种荒漠灌木苗期对干旱胁迫的生理响应和抗旱性综合评价[D]. 兰州: 甘肃农业大学, 2010. |
[Huo Hong. Physiological Response to Drought Stress and Drought Resistance Estimation of Five Desert Shrub Seedling in Hexi Region[D]. Lanzhou: Gansu Agricultural University, 2010.] | |
[39] | 丁龙, 赵慧敏, 曾文静, 等. 五种西北旱区植物对干旱胁迫的生理响应[J]. 应用生态学报, 2017, 28(5): 1455-1463. |
[Ding Long, Zhao Huimin, Zeng Wenjing, et al. Physiological responses of five plants in Northwest China arid area under drought stress[J]. Chinese Journal of Applied Ecology, 2017, 28(5): 1455-1463.] | |
[40] | 张灵. 梭梭对不同程度模拟干旱胁迫的动态生理响应机制[D]. 兰州: 兰州大学, 2015. |
[Zhang Ling. Dynamic Physiological Mechanism of Haloxylon ammodendron Responding to Various Degrees of Modeling Drought Stress[D]. Lanzhou: Lanzhou University, 2015.] |
/
〈 | 〉 |