Weather and Climate

Characteristics of the spatial and temporal evolution of winter drought in Inner Mongolia over the past 40 years

  • TAO Jifeng ,
  • BAO Yulong ,
  • GUO Enliang ,
  • Jin Eerdemutu ,
  • Husile ,
  • BAO Yuhai
Expand
  • 1. College of Geographical Science, Inner Mongolia Normal University, Hohhot 010022, Inner Mongolia, China
    2. Inner Mongolia Key Laboratory of Remote Sensing and Geographic Information Systems, Hohhot 010022, Inner Mongolia, China
    3. Inner Mongolia Key Laboratory of Disaster and Ecological Security on the Mongolian Plateau, Hohhot 010022, Inner Mongolia, China

Received date: 2023-08-18

  Revised date: 2023-12-01

  Online published: 2024-04-01

Abstract

Winter drought is a main factor hindering winter livestock production in Inner Mongolia. Thus, quantitative characterization of its spatiotemporal changes and development patterns is of great significance for disaster prevention and reduction and for ensuring the healthy development of agriculture and animal husbandry. Using ERA5-Land reanalysis meteorological data from the winter of 1980 to 2021 (October to March of the following year), the standardized precipitation evapotranspiration index (SPEI) was calculated at monthly and semi-annual scales. Trend analysis, spatiotemporal hotspot analysis, and other methods were used to analyze the winter drought evolution characteristics of the entire Inner Mongolia region and the five main vegetation types. Results show that in the past 40 years, the overall SPEI in Inner Mongolia has shown an increasing trend in winter, and aridification varies among different vegetation and months, with a few vegetation and months tending toward humidification. The change patterns in Inner Mongolia mainly include three types: oscillating hot spots, oscillating cold spots, and undetected patterns. From a seasonal perspective, hotspots are primarily distributed in most areas of western Inner Mongolia, as well as in Xing’an League and Tongliao City in the east. On a monthly scale, hotspots often appear in the central and western regions of Inner Mongolia. With regard to drought frequency and frequency statistics, mild drought events have the highest frequency, whereas winter drought events occur more frequently and seriously in desert grasslands and neighboring desert areas.

Cite this article

TAO Jifeng , BAO Yulong , GUO Enliang , Jin Eerdemutu , Husile , BAO Yuhai . Characteristics of the spatial and temporal evolution of winter drought in Inner Mongolia over the past 40 years[J]. Arid Zone Research, 2024 , 41(3) : 387 -398 . DOI: 10.13866/j.azr.2024.03.04

References

[1] Liu J G, Chen H, Tian Z, et al. Interpretation of IPCC AR6: Climate change and water security[J]. Climate Change Research, 2022, 18(4): 405-413.
[2] Zhao D, Zhang Z, Zhang Y, et al. Soil moisture dominates the forest productivity decline during the 2022 China compound drought-heatwave event[J]. Geophysical Research Letters, 2023, 50(17): e2023GL104539.
[3] Wang J S, Han L Y, Jia J Y, et al. The spatial distribution characteristics of a comprehensive drought risk index in southwestern China and underlying causes[J]. Theoretical and Applied Climatology, 2016, 124(3-4): 517-528.
[4] 包玉龙, 来全, 丽娜, 等. 基于MOD10A1的草原黑灾监测方法研究[J]. 灾害学, 2017, 32(2): 54-58.
  [Bao Yulong, Lai Quan, Li Na, et al. Research on the monitoring method of grassland black disaster based on MOD10A1[J]. Journal of Disasters, 2017, 32(2): 54-58.]
[5] Merabti A, Darouich H, Paredes P, et al. Assessing spatial variability and trends of droughts in eastern algeria using SPI, RDI, PDSI, and MedPDSI—A novel drought index using the FAO56 evapotranspiration method[J]. Water, 2023, 15(4): 626.
[6] Yang B, Kong L, Lai C G, et al. A framework on analyzing long-term drought changes and its influential factors based on the PDSI[J]. Atmosphere, 2022, 13(7): 1151.
[7] Ling M H, Han H B, Hu X Y, et al. Drought characteristics and causes during summer maize growth period on Huang-Huai-Hai Plain based on daily scale SPEI[J]. Agricultural Water Management, 2023, 280(30): 108198.
[8] 赵晓萌, 雷田旺, 范婧儿, 等. 基于气象干旱综合监测指数(MCI)的陕西省干旱灾害风险评估与区划[J]. 中国沙漠, 2022, 42(6): 125-133.
  [Zhao Xiaomeng, Lei Tianwang, Fan Jinger, et al. Risk assessment and regionalization of drought disasters in different seasons in Shanxi, China based on MCI[J]. Journal of Desert Research, 2022, 42(6): 125-133.]
[9] 单璐璐, 董海涛, 谭丽静, 等. K干旱指数在干旱监测中的应用[J]. 安徽农业科学, 2017, 45(25): 193-195, 198.
  [Shan Lulu, Dong Haitao, Tan Lijing, et al. Application of K drought monitoring[J]. Journal of Anhui Agricultural Sciences, 2017, 45(25): 193-195, 198.]
[10] 陈正发, 李靖, 相彪, 等. 基于SPI的云南省多尺度干旱时空演变特征识别[J]. 灌溉排水学报, 2023, 42(4): 92-99.
  [Chen Zhengfa, Li Jing, Xiang Biao, et al. Identification of spatio-temporal evolution characteristics of multi-scale drought in Yunnan Province based on SPI[J]. Journal of Irrigation and Drainage, 2023, 42(4): 92-99.]
[11] 段莹, 王文, 蔡晓军. PDSI、SPEI及CI指数在2010/2011年冬、春季江淮流域干旱过程的应用分析[J]. 高原气象, 2013, 32(4): 1126-1139.
  [Duan Ying, Wang Wen, Cai Xiaojun. Application analysis of PDSI, SPEI, and CI indices in the drought process of the Yangtze-Huaihe River basin in winter/spring of 2010/2011[J]. Plateau Meteorology, 2013, 32(4): 1126-1139.]
[12] 周小东, 常顺利, 王冠正, 等. 天山北坡中段雪岭云杉径向生长对气候变化的响应[J]. 干旱区研究, 2023, 40(8): 1215-1228.
  [Zhou Xiaodong, Chang Shunli, Wang Guanzheng, et al. Radial growth response of Picea schrenkiana to climate change in the middle section of the northern slope of the Tianshan Mountains[J]. Journal of Ecology, 2023, 40(8): 1215-1228.]
[13] 王林, 陈文. 标准化降水蒸散指数在中国干旱监测的适用性分析[J]. 高原气象, 2014, 33(2): 423-431.
  [Wang Lin, Chen Wen. Analysis of the applicability of the standardized precipitation evapotranspiration index for drought monitoring in China[J]. Plateau Meteorology, 2014, 33(2): 423-431.]
[14] 郭海瑛, 王胜, 王娟, 等. 陇东半干旱地区冬季积温变化特征及其对冬小麦的影响[J]. 中国农学通报, 2018, 34(20): 101-105.
  [Guo Haiying, Wang Sheng, Wang Juan, et al. Characteristics of winter temperature accumulation in semi-arid areas of eastern Gansu and its impact on winter wheat[J]. Chinese Agricultural Science Bulletin, 2018, 34(20): 101-105.]
[15] 张棋, 许德合, 丁严. 基于SPEI和时空立方体的中国近40年干旱时空模式挖掘[J]. 干旱地区农业研究, 2021, 39(3): 194-201.
  [Zhang Qi, Xu Dehe, Ding Yan. Mining of spatio-temporal patterns of drought in China over the past 40 years based on SPEI and spatio-temporal cube[J]. Agricultural Research in the Arid Areas, 2021, 39(3): 194-201.]
[16] Wang Y F, Liu G X, Guo E L. Spatial distribution and temporal variation of drought in Inner Mongolia during 1901-2014 using Standardized Precipitation Evapotranspiration Index[J]. Science of Total Environment, 2019, 654(1): 850-862.
[17] 马雪晴. 基于大气再分析数据的内蒙古半干旱草原植被物候预测研究[D]. 石家庄: 河北地质大学, 2022.
  [Ma Xueqing. Research on the Prediction of Vegetation Phenology in the Semi-Arid Grasslands of Inner Mongolia Based on Atmospheric Reanalysis Data[D]. Shijiazhuang: Hebei University of Geosciences, 2022.]
[18] Liu Y, Yang Y. Detecting a declining trend of multidepth soil moisture over the mongolian plateau from 1950 to 2020 Using ERA5-Land reanalysis datasets[J]. IEEE Access, 2022, 10: 95509-95526.
[19] Xie W, Yi S, Leng C, et al. The evaluation of IMERG and ERA5-Land daily precipitation over China with considering the influence of gauge data bias[J]. Scientific Reports, 2022, 12: 8085.
[20] Guo E L, Wang Y F, Wang C L, et al. NDVI indicates long-term dynamics of vegetation and its driving forces from climatic and anthropogenic factors in Mongolian Plateau[J]. Remote Sensing, 2021, 13(4): 688.
[21] 乌日娜, 刘步云, 包玉海. 干旱对中国北方草原总初级生产力影响的时滞和累积效应[J]. 干旱区研究, 2023, 40(10): 1644-1660.
  [Wu Rina, Liu Buyun, Bao Yuhai. Time lag and cumulative effects of drought on the total primary productivity of grasslands in northern China[J]. Arid Zone Research, 2023, 40(10): 1644-1660.]
[22] Vicente-Serrano S M, McVicar T R, Miralles D G, et al. Unraveling the influence of atmospheric evaporative demand on drought and its response to climate change[J]. WIREs Climate Change, 2020, 11(2): e632.
[23] 金燕, 晏红明, 张茂松, 等. 云南冬半年极端低温事件与大气环流的关系[J]. 高原气象, 2022, 41(5): 1302-1314.
  [Jin Yan, Yan Hongming, Zhang Maosong, et al. Relationship between extreme low temperature events and atmospheric circulation in Yunnan during winter half year[J]. Plateau Meteorology, 2022, 41(5): 1302-1314.]
[24] 中华人民共和国国家标准: 气象干旱等级(GB/T 20481-2017)[S]. 北京: 中国标准出版社, 2017.
  [National Standard of the People’s Republic of China: Grades of Meteorological Drough t(GB/T 20481-2017)[S]. Beijing: Standards Press of China, 2017.]
[25] Kang Y, Guo E L, Wang Y F, et al. Characterisation of compound dry and hot events in Inner Mongolia and their relationship with large-scale circulation patterns[J]. Journal of Hydrology, 2022, 612: 128296.
[26] 昙娜, 阿拉腾图娅, 包玉龙, 等. 基于时空立方体的蒙古高原草原火高频区时空演变特征[J]. 草业科学, 2023, 40(11): 2763-2774.
  [Tan Na, A latengtuya, Bao Yulong, et al. Spatiotemporal evolution characteristics of high-frequency grassland fire area in Mongolian Plateau based on a space-time cube[J]. Pratacultural Science, 2023, 40(11): 2763-2774.]
[27] Zhang Y, Zhang Y J, Cheng L, et al. Have China’s drylands become wetting in the past 50 years?[J]. Journal of Geographical Sciences, 2023, 33(1): 99-124.
[28] Feng H H, Zhang M Y. Global land moisture trends: Drier in dry and wetter in wet over land[J]. Science Report, 2016, 5: 18018.
[29] 杨舒畅, 杨恒山. 1982—2013年内蒙古地区干旱变化及植被响应[J]. 自然灾害学报, 2019, 28(1): 175-183.
  [Yang Shuchang, Yang Hengshan. Drought evolution and vegetation response in Inner Mongolia from 1982 to 2013[J]. Journal of Natural Disasters, 2019, 28(1): 175-183.]
[30] 岳亚朋, 李建国, 潘霞, 等. 中国植被活动变化的主导因素[J]. 江苏师范大学学报(自然科学版), 2023, 41(1): 50-55.
  [Yue Yapeng, Li Jianguo, Pan Xia, et al. Identifying dominant factor driving vegetation activity in China[J]. Journal of Jiangsu Normal University (Natural Science Edition), 2023, 41(1): 50-55.]
[31] Yu D S, Li Y H, Yin B L, et al. Spatiotemporal variation of net primary productivity and its response to drought in Inner Mongolian desert steppe[J]. Global Ecology and Conservation, 2022, 33: e01991.
[32] Chang Y W, Zhang R Q, Hai C X, et al. Seasonal variation in soil temperature and moisture of a desert steppe environment: A case study from Xilamuren, Inner Mongolia[J]. Environmental Earth Science, 2021, 80: 290.
[33] Chen J, Zhang B, Zhou J, et al. Temporal and spatial changes of drought characteristics in temperate steppes in China from 1960 to 2020[J]. Sustainability, 2023, 15(17): 12909.
[34] An Q, He H X, Nie Q W, et al. Spatial and temporal variations of drought in Inner Mongolia, China[J]. Water, 2020, 12(6): 1715.
[35] 谢岷, 高聚林, 孙继颖, 等. 基于SPEI指数的内蒙古多时空尺度干旱特征分析[J]. 灌溉排水学报, 2022, 41(6): 140-146.
  [Xie Min, Gao Julin, Sun Jiying, et al. Analysis of multi-temporal and spatial scale drought characteristics in Inner Mongolia based on SPEI index[J]. Journal of Irrigation and Drainage, 2022, 41(6): 140-146.]
Outlines

/