羌塘高原申扎高寒湿地辐射平衡和地表反照率特征
收稿日期: 2020-12-10
修回日期: 2021-03-17
网络出版日期: 2021-09-24
基金资助
第二次青藏高原综合科学考察研究(2019QZKK0201);中国科学院战略先导A专项(XDA20060201);国家重点研发项目(2017YFA0603101);国家自然科学基金青年项目(41801051)
Characteristics of the radiation balance and surface albedo of a typical alpine wetland in Qiangtang Plateau
Received date: 2020-12-10
Revised date: 2021-03-17
Online published: 2021-09-24
羌塘高原湿地能量交换过程及其作用结果对气候有着重要影响。本研究选择羌塘高原申扎地区典型高寒湿地的辐射平衡观测数据为基础,分析了2018-07—2020-07逐日、逐月、逐时、不同季节典型天气辐射各分量及逐日反照率变化特征。日尺度上,辐射各分量均表现出明显的季节规律,呈“U”型变化。6月向下短波辐射全年最大为301.1 W·m-2,平均温度最高,向上长波辐射也达到最大,为371.5 W·m-2,1月则相反。季节尺度上,短波辐射各季节平均值春季>夏季>秋季>冬季,长波辐射和净辐射则夏季最高,冬季最小。不同天气下,各季节晴天辐射通量较平滑,多云和降水天气变化不规则。地表反照率2018—2020年观测均值为0.23,夏、秋季小,冬、春季大,降雪天气甚至达到了0.63。研究结果可对揭示羌塘高原典型高寒湿地辐射收支的动态变化规律、阐明羌塘高原热力作用对其自身及周边地区的影响提供数据支撑。
强耀辉,王坤鑫,马宁,张寅生,郭燕红 . 羌塘高原申扎高寒湿地辐射平衡和地表反照率特征[J]. 干旱区研究, 2021 , 38(5) : 1207 -1215 . DOI: 10.13866/j.azr.2021.05.02
The energy exchange process and its effects on wetlands in the Qiangtang Plateau have an important impact on the local climate. This study is based on the radiation data observed from June 2017 to June 2020 in Xainza—a typical alpine wetland located in the Qiangtang Plateau—and comprehensively analyzes the characteristics of seasonal, monthly, daily, and hourly weather radiation and albedo. The results show that all the radiation components present obvious seasonal “U”-shaped patterns. The maximum downward shortwave radiation is 301.1 W·m-2, and, in June the maximum upward longwave radiation is 371.5 W·m-2, yet the minimum of both appeared in January. Downward shortwave radiation, upward and downward longwave radiation, and net radiation all show obvious seasonal patterns, characterized by “U”-shaped changes. The hourly value of shortwave radiation in each season is the highest in spring, followed by summer and autumn, and the lowest is detected in winter. Longwave radiation and net radiation are highest in summer and lowest in winter. The radiant flux on sunny days in each season is relatively smooth, and the changes in cloud cover and precipitation are irregular; the average yearly surface albedo is 0.23, the lowest detected in summer and the highest in winter, reaching up to 0.63 on snowy days. These results can contribute to revealing the dynamic changes of the radiation budget occurring on the typical alpine wetland of Xainza, in the Qiangtang Plateau, and to clarifying the influence of such variation on the thermal effect.
Key words: Xainza wetland; radiation change; typical weather; albedo
[1] | 姚檀栋, 朴世龙, 沈妙根, 等. 印度季风与西风相互作用在现代青藏高原产生连锁式环境效应[J]. 中国科学院院刊, 2017, 32(9): 976-984. |
[1] | [ Yao Tandong, Piao Shilong, Shen Miaogen, et al. Chained impacts on modern environment of interaction between westerlies and Indian monsoon on Tibetan Plateau[J]. Bulletin of Chinese Academy of Sciences, 2017, 32(9): 976-984. ] |
[2] | Wu G, Duan A, Liu Y, et al. Tibetan Plateau climate dynamics: Recent research progress and outlook[J]. National Science Review, 2015, 2(1):100-116. |
[3] | 王介民. 陆面过程实验和地气相互作用研究——从HEIFE到IMGRASS和GAME-Tibet/TIPEX[J]. 高原气象, 1999, 18(3): 280-294. |
[3] | [ Wang Jiemin. Land surface process experiments and interaction study in China: From HEIFE to IMGRASS and GAME-Tibet/TIPEX[J]. Plateau Meteorology, 1999, 18(3): 280-294. ] |
[4] | 马耀明, 姚檀栋, 王介民. 青藏高原能量和水循环试验研究——GAME/Tibet与CAMP/Tibet研究进展[J]. 高原气象, 2006, 25(2): 344-351. |
[4] | [ Ma Yaoming, Yao Tandong, Wang Jiemin. Experimental study of energy and water cycle in Tibetan Plateau: The progress introduction on the study of GAME/Tibet and CAMP/Tibet[J]. Plateau Meteorology, 2006, 25(2): 344-351. ] |
[5] | Ma Y, Kang S, Zhu L, et al. Tibetan observation and research platform: Atmosphere-land Interaction over a heterogeneous landscape[J]. Bulletin of the American Meteorological Society, 2008, 89(10): 1487-1492. |
[6] | 赵平, 李跃清, 郭学良, 等. 青藏高原地气耦合系统及其天气气候效应: 第三次青藏高原大气科学试验[J]. 气象学报, 2018, 76(6): 833-860. |
[6] | [ Zhao Ping, Li Yueqing, Guo Xueliang, et al. The Tibetan Plateau surface-atmosphere coupling system and its weather and climate effects: The Third Tibetan Plateau Atmospheric Scientific Experiment[J]. Acta Meteorologica Sinica, 2018, 76(6): 833-860. ] |
[7] | 姚檀栋. “第三极环境(TPE)”国际计划——应对区域未来环境生态重大挑战问题的国际计划[J]. 地理科学进展, 2014, 33(7): 884-892. |
[7] | [ Yao Tandong. TPE international program: A program for coping with major future environmental challenges of The Third Pole region[J]. Progress in Geography, 2014, 33(7): 884-892. ] |
[8] | 姚檀栋. 青藏高原水-生态-人类活动考察研究揭示“亚洲水塔”的失衡及其各种潜在风险[J]. 科学通报, 2019, 64(27): 2761-2762. |
[8] | [ YaoTandong. A comprehensive study of Water-Ecosystem-Human activities reveals unbalancing Asian Water Tower and accompanying potential risks[J]. Chinese Science Bulletin, 2019, 64(27): 2761-2762. ] |
[9] | Ma N, Zhang Y, Guo Y, et al. Environmental and biophysical controls on the evapotranspiration over the highest alpine steppe[J]. Journal of Hydrology, 2015, 529: 980-992. |
[10] | Gu S, Tang Y, Cui X, et al. Energy exchange between the atmosphere and a meadow ecosystem on the Qinghai-Tibetan Plateau[J]. Agricultural and Forest Meteorology, 2005, 129(3-4): 175-185. |
[11] | 刘安花, 李英年, 张法伟, 等. 海北高寒湿地地气长、短波辐射的季节变化特征[J]. 草地学报, 2007, 12(3): 283-289. |
[11] | [ Liu Anhua, Li Yingnian, Zhang Fawei, et al. Seasonal variations of short wave and long wave radiation inlayer of soil and atmosphere of alpine wetland at north area of Qinghai[J]. Acta Agrestia Sinica, 2007, 12(3): 283-289. ] |
[12] | 何慧根, 胡泽勇, 荀学义, 等. 藏北高原湿地地表辐射的变化特征[J]. 太阳能学报, 2010, 31(5): 561-567. |
[12] | [ He Huigen, Hu Zeyong, Xun Xueyi, et al. The variation characteristics of radiation of the wetland surface in the northern Tibetan Plateau[J]. Acta Energiae Solaris Sinica, 2010, 31(5): 561-567. ] |
[13] | 张海宏, 祁栋林, 苏文将. 长江源区高寒湿地辐射变化特征[J]. 中国农学通报, 2015, 31(31): 262-267. |
[13] | [ Zhang Haihong, Qi Donglin, Su Wenjiang. Radiation change features at alpine wetland in source region of the Yangtze River[J]. Chinese Agricultural Science Bulletin, 2015, 31(31): 262-267. ] |
[14] | 殷代英, 屈建军, 余晔, 等. 敦煌湖泊湿地生态系统地表辐射平衡特征[J]. 中国沙漠, 2018, 38(1): 172-181. |
[14] | [ Yin Daiying, Qu Jianjun, Yu Ye, et al. Variation of the components of radiation in desert wetland of Dunhuang, China[J]. Journal of Desert Research, 2018, 38(1): 172-181. ] |
[15] | 张乐乐, 高黎明, 陈克龙. 青海湖流域瓦颜山湿地辐射平衡和地表反照率变化特征[J]. 冰川冻土, 2018, 40(6): 1216-1222. |
[15] | [ Zhang Lele, Gao Liming, Chen Kelong. The variation characteristics of radiation balance and surface albedo in Wayanshan Wetland in the Qinghai Lake watershed[J]. Journal of Glaciology and Geocryology, 2018, 40(6): 1216-1222. ] |
[16] | 谢琰, 文军, 刘蓉, 等. 黄河源区高寒湿地近地面辐射收支特征初步分析[J]. 太阳能学报, 2019, 40(1): 1-10. |
[16] | [ Xie Yan, Wen Jun, Liu Rong, et al. An Initial analysis of characteristics of radiation budget near ground in aLpine wetland in source area of the Yellow River[J]. Acta Energiae Solaris Sinica, 2019, 40(1): 1-10. ] |
[17] | Guo Y, Zhang Y, Ma N, et al. Quantifying surface energy fluxes and evaporation over a significant expanding endorheic lake in the central Tibetan Plateau[J]. Journal of the Meteorological Society of Japan, 2016, 94(5): 453-465. |
[18] | 孙志高, 刘景双, 李彬. 中国湿地资源的现状、问题与可持续利用对策[J]. 干旱区资源与环境, 2006, 20(2): 83-88. |
[18] | [ Sun Zhigao, Liu Jingshuang, Li Bin. The actuality, problems and sustainable utilization countermeasures of wetland resources in China[J]. Journal of Arid Land Resources and Environment, 2006, 20(2): 83-88. ] |
[19] | 赵志龙, 张镱锂, 刘林山, 等. 青藏高原湿地研究进展[J]. 地理科学进展, 2014, 33(9): 1218-1230. |
[19] | [ Zhao Zhilong, Zhang Yili, Liu Linshan, et al. Recent changes in wetlands on the Tibetan Plateau: A review[J]. Progress Geography, 2014, 33(9): 1218-1230. ] |
[20] | 刘志伟, 李胜男, 韦玮, 等. 近三十年青藏高原湿地变化及其驱动力研究进展[J]. 生态学杂志, 2019, 38(3): 856-862. |
[20] | [ Liu Zhiwei, Li Shengnan, et al. Research progress on alpine wetland changes and driving forces in Qinghai-Tibet Plateau during the last three decades[J]. Chinese Journal of Ecology, 2019, 38(3): 856-862. ] |
[21] | 王小丹. 申扎高寒草原与湿地生态系统观测试验站[J]. 山地学报, 2014, 32(4): 505-508. |
[21] | [ Wang Xiaodan. Xainza apine gassland and wtland eosystem oservation and eperiment sation[J]. Mountain Research, 2014, 32(4): 505-508. ] |
[22] | 王坤鑫, 张寅生, 张腾, 等. 1979—2017年青藏高原色林错流域气候变化分析[J]. 干旱区研究, 2020, 37(3): 652-662. |
[22] | [ Wang Kunxin, Zhang Yinsheng, Zhang Teng, et al. Analysis of climate change in the Selin Co Basin, Tibetan Plateau, from 1979 to 2017[J]. Arid Zone Research, 2020, 37(3): 652-662. ] |
[23] | 邹基玲, 季国良. 藏北高原太阳总辐射和地表反射率的分光特征[J]. 太阳能学报, 1996, 17(2): 2-6. |
[23] | [ Zou Jiling, Ji Guoliang. The spectral characteristics of global radiation and surface albedo on northern Tibetan Plateau[J]. Acta Energiae Solaris Sinica, 1996, 17(2): 2-6. ] |
[24] | 武荣盛, 马耀明. 青藏高原不同地区辐射特征对比分析[J]. 高原气象, 2010, 29(2): 251-259. |
[24] | [ Wu Rongsheng, Ma Yaoming. Comparative analyses on radiation characteristics in different areas over the Tibetan Plateau[J]. Plateau Meteorology, 2010, 29(2): 251-259. ] |
[25] | 马宁, 王乃昂, 黄银洲, 等. 巴丹吉林沙漠腹地夏季不同天气条件下陆-湖面辐射收支与能量分配特征对比[J]. 自然资源学报, 2015, 30(5): 796-809. |
[25] | [ Ma Ning, Wang Nai’ang, Huang Yinzhou, et al. Characteristics of radiation budget and energy partitioning on land and lake surface under different summer weather conditions in the hinterland of Badain Jaran desert[J]. Journal of Natural Resources, 2015, 30(5): 796-809. ] |
[26] | Wang K, Wang P, Liu J, et al. Variation of surface albedo and soil thermal parameters with soil moisture content at a semi-desert site on the western Tibetan Plateau[J]. Boundary-Layer Meteorology, 2005, 116(1): 117-129. |
[27] | 李才, 翟庆国, 徐锋, 等. 藏北草地资源及其演化趋势——以申扎地区为例[J]. 地质通报, 2003, 22(增刊): 991-998. |
[27] | [ Li Cai, Zhai Qingguo, Xu Feng, et al. Resources in grassland of northern Tibet and its evolutionary trend: A case study of the Zainza area[J]. Geological Bulietin of China, 2003, 22(Suppl. ): 991-998. ] |
[28] | 刘志伟, 李胜男, 韦玮, 等. 近三十年青藏高原湿地变化及其驱动力研究进展[J]. 生态学杂志, 2019, 38(3): 856-862. |
[28] | [ Liu Zhiwei, Li Shengnan, et al. Research progress on alpine wetland changes and driving forces in Qinghai-Tibet Plateau during the last three decades[J]. Chinese Journal of Ecology, 2019, 38(3): 856-862. ] |
[29] | 张乐乐, 高黎明, 陈克龙. 青海湖流域瓦颜山湿地辐射平衡和地表反照率变化特征[J]. 冰川冻土, 2018, 40(6): 1216-1222. |
[29] | [ Zhang Lele, Gao Liming, Chen Kelong. The variation characteristics of radiation balance and surface albedo in Wayanshan Wetland in the Qinghai Lake watershed[J]. Journal of Glaciology and Geocryology, 2018, 40(6): 1216-1222. ] |
[30] | 陈金雷, 文军, 王欣, 等. 黄河源高寒湿地—大气间暖季水热交换特征及关键影响参数研究[J]. 大气科学, 2017, 41(2): 302-312. |
[30] | [ Chen Jinlei, Wen Jun, Wang Xin, et al. The characteristics of water and heat exchange and its crucial influencing factors over alpine wetland during warm season in the source region of the Yellow River[J]. Chinese Journal of Atmospheric Sciences, 2017, 41(2): 302-312. ] |
[31] | 李凤霞, 常国刚, 肖建设, 等. 黄河源区湿地变化与气候变化的关系研究[J]. 自然资源学报, 2009, 24(4): 683-690. |
[31] | [ Li Fengxia, Chang Guogang, Xiao Jianshe, et al. Relationship between wetlands changes and climate change in the Yellow River source region[J]. Journal of Natural Resources, 2009, 24(4): 683-690. ] |
[32] | 马伟强, 马耀明, 胡泽勇, 等. 藏北高原地面辐射收支的初步分析[J]. 高原气象, 2004, 23(3): 348-352. |
[32] | [ Ma Weiqiang, Ma Yaoming, Hu Zeyong. Analyses on surface radiation budget in northern Tibetan Plateau[J]. Plateau Meteorology, 2004, 23(3): 348-352. ] |
/
〈 | 〉 |