土壤环境

青藏高原东北缘土壤微生物群落结构变化

  • 斯贵才 ,
  • 王光鹏 ,
  • 雷天柱 ,
  • 张更新 ,
  • 夏燕青 ,
  • 陈芳荣
展开
  • 1.甘肃省油气资源研究重点实验室/中国科学院油气资源研究重点实验室,甘肃 兰州 730000;
    2.冰冻圈科学国家重点实验室,中国科学院寒区旱区环境与工程研究所,甘肃 兰州 730000;
    3.中国科学院青藏高原研究所,北京 100101
斯贵才(1985-),男,助理研究员,主要研究方向地质微生物. E-mail: sgcstchhh@126.com

收稿日期: 2013-12-10

  修回日期: 2014-04-17

  网络出版日期: 2015-10-14

基金资助

中国科学院寒区旱区环境与工程研究所冰冻圈科学国家重点实验室开放基金项目(SKLCS-OP-2013-02);国家自然科学基金青年基金项目(41301062)资助

Microbial Community Structural Change in Northeastern Tibetan Plateau

  • SI Gui-cai ,
  • WANG Guang-peng ,
  • LEI Tian-zhu ,
  • ZHANG Geng-xin ,
  • XIA Yan-qing ,
  • CHEN Fang-rong
Expand
  • 1. Key Laboratory of Petroleum Resources, Gansu Province/Key Laboratory of Petroleum Resources, Institute of Geology and Geophysics, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China;
    2. State Key Laboratory of Cryospheric Science, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China;
    3. Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China

Received date: 2013-12-10

  Revised date: 2014-04-17

  Online published: 2015-10-14

摘要

选取青藏高原东北缘地区自然降水梯度下土壤样品,利用磷脂脂肪酸(PLFA)技术研究了土壤微生物群落结构随年平均降水量变化情况,探讨引起微生物群落结构变化的主要因子。结果表明:随着年平均降水量的下降,土壤有机碳和全氮含量显著下降。细菌、真菌和放线菌含量随着年降水量的下降而显著减少,但在干旱区生物量有增加趋势,表明干旱地区少量的降水不会引起微生物量的显著改变。经相关分析与典范对应分析,在0~5 cm和5~10 cm土层,年降水量与土壤主要理化性质、土壤微生物量有着显著的相关关系,表明在干旱半干旱地区年降水量是影响土壤微生物群落结构的主要因子,并且在0~5 cm土层更加显著。

本文引用格式

斯贵才 , 王光鹏 , 雷天柱 , 张更新 , 夏燕青 , 陈芳荣 . 青藏高原东北缘土壤微生物群落结构变化[J]. 干旱区研究, 2015 , 32(5) : 849 -855 . DOI: 10.13866/j.azr.2015.05.03

Abstract

Soil microbial response to climate change will affect the whole ecological process,and represent many uncertainties feedback of ecosystem to climate change. Six sample sites and two soil depths (0-5 cm,5-10 cm),a total of twelve samples were collected along a mean annual precipitation (MAP) gradient in arid and semi-arid,northeastern of Tibetan Plateau and PLFA technology was used to analyze microbial community structure and total microbial biomass. These results showed that total organic carbon and total nitrogen were significantly declined with the MAP decreasing,which was also found in bacteria,fungi,actinomycete biomass. However,microbial biomass had an increased trend in the extreme arid area. Person correlation analysis and Canonical Correspondence Analysis showed that both in 0-5 cm and 5-10 cm soil depth,MAP had a significant correlation with soil physicochemical properties and soil microbial biomass indicate that MAP was a key factor in soil microbial community structure in arid and semi-arid area,which was more significant in 0-5 cm soil depth. The study will provide theoretical basis for further studies of soil microorganisms' response to the water landscape change in the background of global climate change in arid zone.

参考文献

〔1〕 Solomon S.Climate Change 2007:The Physical Science Basis:Con-tribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change〔M〕.Cambridge:Cambridge University Press,2007.
〔2〕 Torsvik V L,Ovreas,Thingsta T F.Prokaryotic diversity-Magnitude,dynamics,and controlling factors〔J〕.Science,2002,296(5 570):1 064-1 066.
〔3〕 Lucas R W,Casper B B,Jackson J K,et al.Soil microbial communities and extracellular enzyme activity in the New Jersey Pinelands〔J〕.Soil Biology and Biochemistry,2007,39(10):2 508-2 519.
〔4〕 Landesman W J,Dighton J.Shifts in microbial biomass and the Bacteria:Fungi ratio occur under field conditions within 3 h after rainfall〔J〕.Microbial Ecology,2011,62(1):228-236.
〔5〕 Hgberg M N,Hgberg P,Myrold D D.Is microbial community composition in boreal forest soils determined by pH,C-to-N ratio,the trees,or all three?〔J〕.Oecologia,2006,150(4):590-601.
〔6〕 Wu Y,Ma B,Zhou L,et al.Changes in the soil microbial community structure with latitude in eastern China,based on phospholipid fatty acid analysis〔J〕.Applied Soil Ecology,2009,43(2/3):234-240.
〔7〕 Rousk J,Brookes P C,Baath E.The microbial PLFA composition as affected by pH in an arable soil〔J〕.Soil Biology and Biochemistry,2010,42(3):516-520.
〔8〕 Bachar A,Al-Ashhab A,Soares M I M,et al.Soil microbial abundance and diversity along a low precipitation gradient〔J〕.Microbial Ecology,2010,60(2):453-461.
〔9〕 Raich J W,Potter C S.Global patterns of carbon-dioxide emissions from soils〔J〕.Global Biogeochemical Cycles,1995,9(1):23-36.
〔10〕 Aerts R.Climate,leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems:A triangular relationship〔J〕.Oikos,1997,79(3):439-449.
〔11〕 Sala O E,Parton W J,Joyce L A,et al.Primary production of the central grassland region of the united-states〔J〕.Ecology,1988,69(1):40-45.
〔12〕 Wichern F,Joergensen R G.Soil microbial properties along a precipitation transect in southern africa〔J〕.Arid Land Research and Management,2009,23(2):115-126.
〔13〕 姚檀栋,朱立平.青藏高原环境变化对全球变化的响应及其适应对策〔J〕.地球科学进展,2006,21(5):460-464.〔Yao Tandong,Zhu Liping.The response of environmental changes on Tibetan Plateau to global changes and adaptation strategy〔J〕.Advances in Earth Science,2006,21(5):460-464.〕
〔14〕 中国科学院南京土壤研究所.土壤理化分析〔M〕.上海:上海科学技术出版社,1978.〔Institute of Soil Science,Chinese Academy of Sciences.Analytical Methods of Soil Physical and Chemical Properties〔M〕.Shanghai:Shanghai Science and Technology Press,1978.〕
〔15〕 White D,Davis W,Nickels J,et al.Determination of the sedimentary microbial biomass by extractible lipid phosphate〔J〕.Oecologia,1979,40:51-62.
〔16〕 Steinberger Y,Zelles L,Bai Q Y,et al.Phospholipid fatty acid profiles as indicators for the microbial community structure in soils along a climatic transect in the Judean Desert〔J〕.Biology and Fertility of Soils,1999,28(3):292-300.
〔17〕 Lovell R D,Jarvis S C,Bardgett R D.Soil microbial biomass and activity in long-term grassland-effects of management changes〔J〕.Soil Biology and Biochemistry,1995,27:969-975.
〔18〕 Federle T W,Dobbins D C,Thorntonmanning J R,et al.Microbial biomass,activity,and community structure in subsurface soils〔J〕.Ground Water,1996,24:365-374.
〔19〕 Frostegard A,Baath E,Tunlid A.Shifts in the structure of soil microbial communities in limed forests as revealed by phospholipid fatty-acid analysis〔J〕.Soil Biology and Biochemistry,1993,25:723-730.
〔20〕 Frostegard A,Tunlid A,Baath E.Phospholipid fatty-acid composition,biomass,and activity of microbial communities from 2 soil types experimentally exposed to different heavy-metals〔J〕.Applied and Environmental Microbiology,1993,59:3 605-3 617.
〔21〕 Kroppenstedt R M.Chemical Methods in Bacterial Systematics〔M〕.London:Academic Press,1985:173-199.
〔22〕 Zelles L,Bai Q Y,Ma R X,et al.Microbial biomass,metabolic-activity and nutritional-status determined from fatty-acid patterns and poly-hydroxybutyrate in agriculturally-managed soils〔J〕.Soil Biology and Biochemistry,1994,26:439-446.
〔23〕 Zogg G P,Zak D R,Ringelberg D B,et al.Compositional and functional shifts in microbial communities due to soil warming〔J〕.Soil Science Society of America Journal,1997,61:475-481.
〔24〕 Mutabaruka R,Hairiah K,Cadisch G.Microbial degradation of hydrolysable and condensed tannin polyphenol-protein complexes in soils from different land-use histories〔J〕.Soil Biology and Biochemistry,2007,39:1 479-1 492.
〔25〕 Ajwa H A,Rice C W,Sotomayor D.Carbon and nitrogen mineralization in tallgrass prairie and agricultural soil profiles〔J〕.Soil Science Society of America Journal,1998,62(4):942-951.
〔26〕 Fierer N,Joshua P S,Patricia A H.Variations in microbial community composition through two soil depth profiles〔J〕.Soil Biology and Biochemistry,2003,35(1):167-176.
〔27〕 Ding G,Novak J M,Amarasiriwardena D,et al.Soil organic matter characteristics as affected by tillage management〔J〕.Soil Science Society of America Journal,2002,66(2):421-429.
〔28〕 Feng Y,Motta A C,Reeves D W,et al.Soil microbial communities under conventional-till and no-till continuous cotton systems〔J〕.Soil Biology and Biochemistry,2003,35(12):1 693-1 703.
文章导航

/