生态与环境

横向垄状微地形近地表风速脉动特征

  • 李秀明 ,
  • 贾文茹 ,
  • 李生宇 ,
  • 王翠 ,
  • 王世杰
展开
  • 1.河北地质大学管理学院河北 石家庄 050031
    2.河北省科协智库地学旅游与乡村振兴研究基地河北 石家庄 050031
    3.中国科学院新疆生态与地理研究所干旱区生态安全与可持续发展全国重点实验室新疆 乌鲁木齐 830011
    4.中国科学院新疆生态与地理研究所国家荒漠-绿洲生态建设工程技术研究中心新疆 乌鲁木齐 830011
    5.中国科学院新疆生态与地理研究所莫索湾沙漠研究站新疆 石河子 832011
    6.内蒙古科技大学包头师范学院内蒙古 包头 014030
李秀明(1982-),男,副教授,主要从事地貌演化与荒漠化防治研究. E-mail: lixiuming010@163.com
贾文茹. E-mail: jiawenru@ms.xjb.ac.cn

收稿日期: 2024-11-20

  修回日期: 2025-03-02

  网络出版日期: 2025-10-22

基金资助

新疆维吾尔自治区自然科学基金项目(2024D01A142);新疆维吾尔自治区重大科技专项项目5(2024A03010-5);国家自然科学基金项目(42101010);国家自然科学基金项目(42361001)

Characteristics of wind velocity pulsation of transverse ridge microtopography

  • LI Xiuming ,
  • JIA Wenru ,
  • LI Shengyu ,
  • WANG Cui ,
  • WANG Shijie
Expand
  • 1. School of Management, Hebei GEO University, Shijiazhuang 050031, Hebei, China
    2. Geo-tourism and Rural Revitalization Research Base of Hebei Provincial Association for Science and Technology Think Tanks, Shijiazhuang 050031, Hebei, China
    3. State Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China
    4. National Engineering Research Center for Desert-Oasis Ecological Construction, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China
    5. Mosuo Bay Desert Research Station, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Shihezi 832011, Xinjiang, China
    6. Baotou Teachers’ College of Inner Mongolia University of Science and Technology, Baotou 014030, Inner Mongolia, China

Received date: 2024-11-20

  Revised date: 2025-03-02

  Online published: 2025-10-22

摘要

风速脉动是影响近地表风速和侵蚀力的主要空气动力学因子,研究垄状微地形近地表风速脉动特征对理解垄作农田的防风蚀效应至关重要。本文利用风洞模拟试验测量了垄状微地形条件下的近地表风速,分析了不同高度和间距组合下的风速脉动特征。结果表明:从上风向垄顶到下风向垄顶,贴地层的风速脉动强度(uv)先急剧下降而后逐渐增加,并在下风向垄前再次减小。不同来流摩阻风速(u*)下,风速脉动强度最大值(uv_max)在0.59~2.42 m·s-1之间,且大多出现在测点3H~5H(H:垄高)之间,垄间平均风速脉动强度(uv_ave)随测量高度和垄间距增加先增大后减小,最大值出现的高度约与垄高相当。uv_ave随来流摩阻风速(u*)和垄高增加总体增大。1 cm高度uv_ave随垄密度增大呈指数规律减小,随u*增加呈线性关系增大。垄间平均风速脉动强度(uv_ave)的变化规律可揭示风蚀分布的差异,垄密度控制在1~2行·m-1时,可有效提高防风蚀效果。

本文引用格式

李秀明 , 贾文茹 , 李生宇 , 王翠 , 王世杰 . 横向垄状微地形近地表风速脉动特征[J]. 干旱区研究, 2025 , 42(5) : 933 -943 . DOI: 10.13866/j.azr.2025.05.15

Abstract

Wind velocity pulsation is the primary aerodynamic factor affecting near-surface wind velocity and erosive force. It is of great significance to study the wind velocity pulsation characteristics near-surface of ridge microtopography for understanding the wind erosion prevention effect of ridge farmland. This paper used wind tunnel experiment to measure the near-surface wind velocity under ridge microtopography conditions,and analyzed the characteristics of the wind velocity pulsation. The results showed that wind velocity pulsation intensity (uv) near-surface first sharply decreases and then gradually increases from the top of the upwind ridge to the top of the downwind ridge, and then decreases again before the downwind ridge. The maximum intensity of wind velocity pulsation (uv_max) under different incoming wind velocities is between 0.59 m·s-1 and 2.42 m·s-1, with most occurrences between measuring points 3H and 5H (H: ridge height). The average intensity of wind velocity pulsation (uv_ave) between adjacent ridges increases initially and then decreases with the increase of measurement height and ridge spacing, with the uv_max appearing at a height approximately equivalent to the ridge height. uv_ave showes an increasing trend with increasing incoming frictional wind velocity and ridge height. The uv_ave at a height of 1 cm decreases exponentially with increasing ridge density, and increases linearly with increasing incoming frictional wind velocity. The variation pattern of the uv_ave can reveal the differences in wind erosion distribution. When the ridge density is controlled within 1-2 ridges·m-1, it can effectively enhance the effectiveness of wind erosion prevention.

参考文献

[1] Martin R L, Barchyn T E, Hugenholtz C H, et al. Timescale dependence of aeolian sand flux observations under atmospheric turbulence[J]. Journal of Geophysical Research Atmospheres, 2013, 118(16): 9078-9092.
[2] Skidmore E L. Wind erosion climatic erosivity[J]. Climatic Change, 1986, 9: 195-208.
[3] 邹学勇, 张梦翠, 张春来, 等. 输沙率对土壤颗粒特性和气流湍流脉动的响应[J]. 地球科学进展, 2019, 34(8): 787-800.
  [Zou Xueyong, Zhang Mengcui, Zhang Chunlai, et al. Response of aeolian flux to soil particle properties and airflow turbulence fluctuation[J]. Advances in Earth Science, 2019, 34(8): 787-800.]
[4] 亢力强, 张琴, 张萌. 风洞边界层内单细长柔性植株周围地表气流剪应力分布特征[J]. 中国沙漠, 2023, 43(4): 128-134.
  [Kang Liqiang, Zhang Qin, Zhang Meng. Characteristics of surface shear stress distribution around a slender flexible plant model in wind tunnel boundary layer[J]. Journal of Desert Research, 2023, 43(4): 128-134.]
[5] Chepil W S, Siddoway F H. Strain-gage anemometer for analyzing various characteristics of wind turbulence[J]. Journal of Meteorology, 1959, 16(4): 411-418.
[6] Dong Z B, Wang X M, Liu L Y. Wind erosion in arid and semi-arid China: An overview[J]. Journal of Desert Research, 2000, 20(2): 134-139.
[7] Butterfield G R. Transitional behavior of saltation: Wind tunnel observations of unsteady winds[J]. Journal of Arid Environments, 1998, 39(3): 377-394.
[8] Malina F J. Recent developments in the dynamics of wind erosion[J]. Transactions-American Geophysical Union, 1941, 22(2): 262-287.
[9] Butterfield G R. Grain transport rates in steady and unsteady turbulent airflows[J]. Acta Mechanica, 1991, 1: 97-122.
[10] 李振山, 倪晋仁. 风沙流研究的历史、现状及其趋势[J]. 干旱区资源与环境, 1998, 12(3): 89-97.
  [Li Zhenshan, Ni Jinren. Aeolian sand transport processes[J]. Journal of Arid Land Resources and Environment, 1998, 12(3): 89-97.]
[11] Spies P J, Mcewan I K, Butterfield G R. One-dimensional transitional behaviour in saltation[J]. Earth Surface Processes and Landforms, 2000, 25(5): 505-518.
[12] Sterk G, Jacobs A F G, Boxel J. The effect of turbulent flow structures on saltation sand transport in the atmospheric boundary layer[J]. Earth Surface Processes and Landforms, 1998, 23(10): 877-887.
[13] Leenders J K, Boxel J H V, Sterk G. Wind forces and related saltation transport[J]. Geomorphology, 2005, 71(3-4): 357-372.
[14] Mayaud J, Wiggs G, Bailey R. A new turbulence-based model for sand transport[C]// EGU General Assembly. Geophysical Research Abstracts. Vienna Austria. 2016, 18: 75.
[15] Lyles L, Krauss R K. Threshold velocities and initial particle motion as influenced by air turbulence[J]. Transactions of the American Society of Agricultural Engineers, 1971, 14(3): 563-566.
[16] Stout J E, Zobeck T M. Intermittent saltation[J]. Sedimentology, 1997, 44(5): 959-970.
[17] Durán O, Claudin P, Andreotti B. On aeolian transport: Grain-scale interactions, dynamical mechanisms and scaling laws[J]. Aeolian Research, 2011, 3(3): 243-270.
[18] Shao Y. A similarity theory for saltation and application to aeolian mass flux[J]. Boundary-Layer Meteorology, 2005, 115(2): 319-338.
[19] 王萍, 郑晓静. 野外近地表风沙流脉动特征分析[J]. 中国沙漠, 2013, 33(6): 1622-1628.
  [Wang Ping, Zheng Xiaojing. Fluctuating of wind-blown sand flux in field wind condition[J]. Journal of Desert Research, 2013, 33(6): 1622-1628.]
[20] 邹学勇, 张春来, 程宏, 等. 土壤风蚀模型中的影响因子分类与表达[J]. 地球科学进展, 2014, 29(8): 875-889.
  [Zou Xueyong, Zhang Chunlai, Cheng Hong, et al. Classification and representation of factors affecting soil wind erosion in a model[J]. Advances in Earth Science, 2014, 29(8): 875-889.]
[21] Marlatt W E, Hyder D N. Soil ridging for reduction of wind erosion from grass seedbeds[J]. Journal of Range Management, 1970, 23(3): 170-174.
[22] Armbrust D V, Chepil W S, Siddoway F H. Effects of ridges on erosion of soil by wind[J]. Soil Science Society of America Journal, 1964, 28(4): 557-560.
[23] 刘目兴, 刘连友, 盖永芹, 等. 农田休闲期垄作地形对近地表风场的影响[J]. 土壤学报, 2007, 44(3): 397-403.
  [Liu Muxing, Liu Lianyou, Gai Yongqin, et al. Effects of microrelief of ridge-tillage on wind field near the surface of fields in fallow[J]. Acta Pedologica Sinica, 2007, 44(3): 397-403.]
[24] Cheng H, He J J, Zou X Y, et al. Characteristics of particle size for creeping and saltating sand grains in aeolian transport[J]. Sedimentology, 2015, 62(5): 1497-1511.
[25] Hagen L J, Armbrust D V. Aerodynamic roughness and saltation trapping efficiency of tillage ridges[J]. Transactions of the ASAE, 1992, 35(4): 1179-1184.
[26] Saleh A. Measuring and predicting ridge-orientation effect on soil surface roughness[J]. Soil Science Society of America Journal, 1994, 58(4): 1228-1230.
[27] Jia W R, Zhang C L, Zou X Y, et al. Effects of ridge height and spacing on the near-surface airflow field and on wind erosion of a sandy soil: Results of a wind tunnel study[J]. Soil & Tillage Research, 2019, 186: 94-104.
[28] 苑依笑. 农田地表空气动力学特性和表土抗蚀性对风蚀的影响[D]. 北京: 北京师范大学, 2023.
  [Yuan Yixiao. Effects of the Aerodynamic Characteristic and Soil Antierodibility of the Farmland Surface on Wind Erosion[D]. Beijing: Beijing Normal University, 2023.]
[29] 李秀明, 贾文茹, 王翠. 垄状微地形对近地表空气动力学特征的影响[J]. 干旱区资源与环境, 2024, 38(4): 105-113.
  [Li Xiuming, Jia Wenru, Wang Cui. Effect of transverse ridge microtopography on aerodynamic characteristics of near-surface air[J]. Journal of Arid Land Resources and Environment, 2024, 38(4): 105-113.]
[30] Jia W R, Zhang C L, Zou X Y, et al. Effect of transverse ridge microtopography on the surface shear stress distribution and soil wind erosion[J]. Soil and Tillage Research, 2020, 198: 104548.
[31] Kardous M, Bergametti G, Marticorena B. Aerodynamic roughness length related to non-aggregated tillage ridges[J]. Annales Geophysicae, 2005, 23(10): 3187-3193.
[32] Dong Z B, Luo W Y, Qian G Q, et al. A wind tunnel simulation of the mean velocity fields behind upright porous fences[J]. Agricultural and Forest Meteorology, 2007, 146(1-2): 82-93.
[33] Dong Z B, Qian G Q, Luo W Y, et al. Threshold velocity for wind erosion: The effects of porous fences[J]. Environmental Geology, 2006, 51(3): 471-475.
[34] Liu M X, Wang J A, Yan P, et al. Wind tunnel simulation of ridge-tillage effects on soil erosion from cropland[J]. Soil & Tillage Research, 2006, 90: 242-249.
文章导航

/