生态与环境

洪积扇末端泥漠近地表风沙流结构特征

  • 江艳冰 ,
  • 周倩 ,
  • 王洪涛 ,
  • 谭立海
展开
  • 1.中国科学院西北生态环境资源研究院,干旱区生态安全与可持续发展重点实验室,甘肃 兰州 730000
    2.中国科学院西北生态环境资源研究院,敦煌戈壁荒漠生态与环境研究站,甘肃 敦煌 736200
    3.中国科学院大学,北京 100049
江艳冰(2001-),女,硕士研究生,主要从事风沙物理与风沙工程学研究. E-mail: jiangyanbing@nieer.ac.cn
谭立海. E-mail: tanlihai09@lzb.ac.cn

收稿日期: 2024-08-17

  修回日期: 2024-10-20

  网络出版日期: 2025-03-17

基金资助

国家自然科学基金(42171015);第三次新疆综合科学考察项目(2021xjkk0305);甘肃省自然科学基金(24JRRA088)

Structure of near-surface wind-blown sand over dry playa at the end of an alluvial fan

  • JIANG Yanbing ,
  • ZHOU Qian ,
  • WANG Hongtao ,
  • TAN Lihai
Expand
  • 1. Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China
    2. Dunhuang Research Station of Gobi Desert Ecology and Environment, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Dunhuang 736200, Gansu, China
    3. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2024-08-17

  Revised date: 2024-10-20

  Online published: 2025-03-17

摘要

泥漠风沙流结构是泥漠微观风沙运动的宏观表征,开展泥漠地表风沙流结构研究,对理解泥漠风沙运动过程,进而探究泥漠粉尘释放动力机制具有重要意义。本文选取额济纳旗北山周边典型洪积扇泥漠,对其近地表风沙流结构进行观测研究。结果表明:泥漠风速廓线曲线呈指数型,空气动力学粗糙度z0为0.058 mm,小于沙漠和戈壁地表。泥漠输沙通量随高度变化呈指数递减规律,泥漠过境风沙流中沙粒平均跃移高度zq为15 cm,90%输沙量集中于0~34 cm高度。其中,细沙粒径组输沙通量垂直剖面曲线与全样沙粒类似,而随着粒径的增大,泥漠输沙通量随高度发生变化,由类“象鼻”曲线过渡为粗沙的“斜Z型”曲线。基于以上研究结果,本文最终提出了泥漠床面沙粒运动的模式。

本文引用格式

江艳冰 , 周倩 , 王洪涛 , 谭立海 . 洪积扇末端泥漠近地表风沙流结构特征[J]. 干旱区研究, 2025 , 42(3) : 568 -576 . DOI: 10.13866/j.azr.2025.03.16

Abstract

The structure of near-surface wind-blown sand flow over dry playa represents the macroscopic characteristics of micro-wind-blown sand movement at such locations. It is important to study such sand flow in order to understand the processes of wind-blown sand movement and dust emissions in dry playa. In this study, a dry playa at the end of a typical alluvial fan around North Mountain of the Ejin Banner was selected for analysis and field observations were conducted on its near-surface wind-blown sand flow structure. The results revealed an exponential wind speed profile over the dry playa surface and the aerodynamic roughness z0 was 0.058 mm, which is smaller than those of sand and gobi surfaces. The sand flux of mixed-particle-size sand decreased exponentially with height over the dry playa surface. The average saltation height zq of sand particles in the desert-crossing wind-sand flow was 15 cm, and 90% of the transport sand was concentrated within the height of 0-34 cm. The vertical profile curve of the sand flux in the fine-sand-particle-size group was similar to that of the mixed-particle-size sand. With increasing particle size, the sand flux in the dry playa changed with height, and the “elephant nose” curve transitioned to an “oblique Z” curve for coarse sand. Thus, this work proposes the mode of sand movement on the dry playa bed.

参考文献

[1] 张煜星. 论荒漠与荒漠化程度评价[J]. 干旱区研究, 1996, 13(2): 77-80.
  [Zhang Yuxing. A discussion on desert and evaluation of desertification[J]. Arid Zone Research, 1996, 13(2): 77-80.]
[2] 杨发相, 桂东伟, 岳健, 等. 干旱区荒漠分类系统探讨——以新疆为例[J]. 干旱区资源与环境, 2015, 29(11): 145-151.
  [Yang Faxiang, Gui Dongwei, Yue Jian, et al. A discussion on classification system of desert in arid land[J]. Journal of Arid Land Resources and Environment, 2015, 29(11): 145-151.]
[3] Maman S, Orlovsky L, Blumberg D G, et al. A landcover change study of takyr surfaces in Turkmenistan[J]. Journal of Arid Environments, 2011, 75(9): 842-850.
[4] 吴正. 风沙地貌与治沙工程学[M]. 北京: 科学出版社, 2003: 15-30.
  [Wu Zheng.Aeolian Sand Geomorphology[M]. Beijing: Science Press, 2003: 15-30.]
[5] 邹学勇, 董光荣, 王周龙. 戈壁风沙流若干特征研究[J]. 中国沙漠, 1995, 15(4): 368-373.
  [Zou Xueyong, Dong Guangrong, Wang Zhoulong. A study on some characteristics of drifting sand flux over Gobi[J]. Journal of Desert Research, 1995, 15(4): 368-373.]
[6] Rasmussen K R, S?rensen M. Vertical variation of particle speed and flux density in aeolian saltation: Measurement and modeling[J]. Journal of Geophysical Research: Earth Surface, 2008, 113(F2): F02S12-1-F02S12-12.
[7] Sharratt B, Feng G. Friction velocity and aerodynamic roughness of conventional and undercutter tillage within the Columbia Plateau, USA[J]. Soil and Tillage Research, 2009, 105(2): 236-241.
[8] Blumberg D G, Greeley R. Field studies of aerodynamic roughness length[J]. Journal of Arid Environments, 1993, 25(1): 39-48.
[9] Tennekes H. The logarithmic wind profile[J]. Journal of Atmospheric Sciences, 1973, 30(2): 234-238.
[10] 杨保, 邹学勇, 董光荣. 风沙流中颗粒跃移研究的某些进展与问题[J]. 中国沙漠, 1999, 19(2): 173-178.
  [Yang Bao, Zou Xueyong, Dong Guangrong. Advances and problems of study on saltation particles in wind-sand current[J]. Journal of Desert Research, 1999, 19(2): 173-178.]
[11] 冯大军, 倪晋仁, 李振山. 风沙流中不同粒径组沙粒的输沙量垂向分布实验研究[J]. 地理学报, 2007, 62(11): 1194-1203.
  [Feng Dajun, Ni Jinren, Li Zhenshan. Vertical mass flux profiles of different grain size groups in aeolian sand transport[J]. Acta Geographica Sinica, 2007, 62(11): 1194-1203.]
[12] 屈建军, 黄宁, 拓万全, 等. 戈壁风沙流结构特性及其意义[J]. 地球科学进展, 2005, 20(1): 19-23.
  [Qu Jianjun, Huang Ning, Tuo Wanquan, et al. Structural characteristics of Gobi sand-drift and its significance[J]. Advances in Earth Science, 2005, 20(1): 19-23.]
[13] Dong Z, Wang H, Liu X, et al. A wind tunnel investigation of the influences of fetch length on the flux profile of a sand cloud blowing over a gravel surface[J]. Earth Surface Processes and Landforms, 2004, 29(13): 1613-1626.
[14] Tan L, Qu J, Wang T, et al. Vertical flux density and frequency profiles of wind-blown sand as a function of the grain size over gobi and implications for aeolian transport processes[J]. Aeolian Research, 2022, 55(1): 100787.
[15] Kok J F, Parteli E J R, Michaels T I, et al. The physics of wind-blown sand and dust[J]. Reports on Progress in Physics, 2012, 75(10): 106901.
[16] Martin R L, Kok J F. Wind-invariant saltation heights imply linear scaling of aeolian saltation flux with shear stress[J]. Science Advances, 2017, 3(6): e1602569.
[17] Tan L, An Z, Zhang K, et al. Intermittent aeolian saltation over a Gobi surface: Threshold, saltation layer height, and high-frequency variability[J]. Journal of Geophysical Research: Earth Surface, 2020, 125(1): e2019JF005329.
[18] Dong Z, Liu X, Wang H, et al. The flux profile of a blowing sand cloud: A wind tunnel investigation[J]. Geomorphology, 2003, 49(3): 219-230.
[19] 柳丽. 基于多尺度湍流运动重构的风沙流模拟及粉尘空间分布研究[D]. 兰州: 兰州大学, 2020.
  [Liu Li. Simulation of Wind-Blown Flow and Research of Spatial Distribution of Dust Based on Multi-scale Turbulent Motion Reconstruction[D]. Lanzhou: Lanzhou University, 2020.]
[20] Reynolds R L, Yount J C, Reheis M, et al. Dust emission from wet and dry playas in the Mojave Desert, USA[J]. Earth Surface Processes and Landforms, 2007, 32(12): 1811-1827.
[21] Tan L, Wang H, An Z, et al. Aeolian sand transport over a dry playa surface: Sand flux density profiles, saltation layer height, and flux scaling laws and implications for dust emission dynamics[J]. CATENA, 2023, 224: 106970.
[22] 陈大伟. 金塔县黑河灌区水资源供需平衡分析[J]. 甘肃水利水电技术, 2017, 53(3): 51-55.
  [Chen Dawei. Analysis of water resources supply and demand balance in Heihe Irrigation District of Jinta County[J]. Gansu Water Resources And Hydropower Technology, 2017, 53(3): 51-55.]
[23] 李强. 酒额铁路酒泉至东风段典型沙害区段风沙环境特征[J]. 中国沙漠, 2023, 43(6): 220-228.
  [Li Qiang. Characteristics of aeolian environment in typical sand-hazard sections along the Jiuquan-Dongfeng section of Jiuquan-Ejin Banner Railway[J]. Journal of Desert Research, 2023, 43(6): 220-228.]
[24] Fryrear D W. A field dust sampler[J]. Journal of Soil and Water Conservation March, 1986, 41(2): 117-120.
[25] Monin A S, Obukhov A M. Basic laws of turbulent mixing in the surface layer of the atmosphere[J]. Contributions of the Geophysical Institute of the Academy of Sciences of the USSR, 1954, 24(151): 163-187.
[26] Metzger M, McKeon B J, Holmes H. The near-neutral atmospheric surface layer: Turbulence and non-stationarity[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2007, 365(1852): 859-876.
[27] Shao Y. A similarity theory for saltation and application to aeolian mass flux[J]. Boundary-Layer Meteorology, 2005, 115(2): 319-338.
[28] Liu B, Wang Z, Niu B, et al. Large scale sand saltation over hard surface: A controlled experiment in still air[J]. Journal of Arid Land, 2021, 13(6): 599-611.
[29] Farrell E J, Sherman D J, Ellis J T, et al. Vertical distribution of grain size for wind blown sand[J]. Aeolian Research, 2012, 7: 51-61.
[30] 刘小平, 董治宝. 砾石床面的空气动力学粗糙度[J]. 中国沙漠, 2003, 23(1): 38-45.
  [Liu Xiaoping, Dong Zhibao. Aerodynamic roughness of gravel beds[J]. Journal of Desert Research, 2003, 23(1): 38-45.]
[31] Zhang C, Yuan Y, Zou X, et al. A comparison of the aerodynamic characteristics of four kinds of land surface in wind erosion areas of northern China[J]. CATENA, 2022, 212: 106112.
[32] Ellis J T, Li B, Farrell E J, et al. Protocols for characterizing aeolian mass-flux profiles[J]. Aeolian Research, 2009, 1(1): 19-26.
[33] 张正偲, 董治宝. 腾格里沙漠东南部野外风沙流观测[J]. 中国沙漠, 2013, 33(4): 973-980.
  [Zhang Zhengcai, Dong Zhibao. Field observation of aeolian sediment flux in the southeast Tengger Desert[J]. Journal of Desert Research, 2013, 33(4): 973-980.]
[34] Dong Z, Qian G. Characterizing the height profile of the flux of wind-eroded sediment[J]. Environmental Geology, 2006, 51(5): 835-845.
[35] Tan L, Zhang K, Wang H, et al. Vertical sand flux density and grain-size distributions for wind-blown sand over a Gobi surface in Milan, Southern Xinjiang, China[J]. Frontiers in Environmental Science, 2022, 10: 859631.
[36] 李凯崇, 薛春晓, 蒋富强, 等. 高原与戈壁地区风沙流结构特性差异研究[J]. 铁道工程学报, 2014, 31(7): 7-11.
  [Li Kaichong, Xue Chunxiao, Jiang Fuqiang, et al. Research on the different characteristics of sand-drift between Gobi and plateau[J]. Journal of Railway Engineering Society, 2014, 31(7): 7-11.]
文章导航

/